Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 22(4): 1518-1524, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35119873

ABSTRACT

Crystalline films offer various physical properties based on the modulation of their thicknesses and atomic structures. The layer-by-layer assembly of atomically thin crystals provides a powerful means to arbitrarily design films at the atomic level, which are unattainable with existing growth technologies. However, atomically clean assembly of the materials with high scalability and reproducibility remains challenging. We report programmed crystal assembly of graphene and monolayer hexagonal boron nitride, assisted by van der Waals interactions, to form wafer-scale films of pristine interfaces with near-unity yield. The atomic configurations of the films are tailored with layer-resolved compositions and in-plane crystalline orientations. We demonstrate batch-fabricated tunnel device arrays with modulation of the resistance over orders of magnitude by thickness control of the hexagonal boron nitride barrier with single-atom precision and large-scale, twisted multilayer graphene with programmable electronic band structures and crystal symmetries. Our results constitute an important development in the artificial design of large-scale films.

2.
Adv Sci (Weinh) ; 7(16): 2001367, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32832372

ABSTRACT

Memory devices have been advanced so much, but still it is highly required to find stable and reliable materials with low-power consumption. Halide perovskites (HPs) have been recently adopted for memory application since they have advantages of fast switching based on ionic motion in crystal structure. However, HPs also suffer from poor stability, so it is necessary to improve the stability of HPs. In this regard, combined first-principles screening and experimental verification are performed to design HPs that have high environmental stability and low-operating voltage for memory devices. First-principles screening identifies 2D layered AB2X5 structure as the best candidate switching layer for memory devices, because it has lower formation energy and defect formation energy than 3D ABX3 or other layered structures (A3B2X7, A2BX4). To verify results, all-inorganic 2D layered CsPb2Br5 is synthesized and used in memory devices. The memory devices that use CsPb2Br5 show much better stability and lower operating voltages than devices that use CsPbBr3. These findings are expected to provide new opportunity to design materials for reliable device applications based on calculation, screening, and experimental verification.

SELECTION OF CITATIONS
SEARCH DETAIL
...