Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
Exp Dermatol ; 33(1): e14844, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37264692

ABSTRACT

Alopecia areata (AA) is a T-cell-mediated autoimmune disease that causes chronic, relapsing hair loss; however, its precise pathogenesis remains to be elucidated. Recent studies have provided compelling evidence of crosstalk between inflammasomes and mitophagy-a process that contributes to the removal of damaged mitochondria. Our previous studies showed that the NLR family pyrin domain containing 3 (NLRP3) inflammasome is important for eliciting and progressing inflammation in AA. In this study, we detected mitochondrial DNA damage in AA-affected scalp tissues and IFNγ and poly(I:C) treated outer root sheath (ORS) cells. In addition, IFNγ and poly(I:C) treatment increased mitochondrial reactive oxygen species (ROS) levels in ORS cells. Moreover, we showed that mitophagy induction alleviates IFNγ and poly(I:C)-induced NLRP3 inflammasome activation in ORS cells. Lastly, PTEN-induced kinase 1 (PINK1) knockdown increased NLRP3 inflammasome activation, indicating that PINK1-mediated mitophagy plays a critical role in NLRP3 inflammasome activation in ORS cells. This study supports previous studies showing that oxidative stress disrupts immune privilege status and promotes autoimmunity in AA. The results emphasize the significance of crosstalk between mitophagy and inflammasomes in the pathogenesis of AA. Finally, mitophagy factors regulating mitochondrial dysfunction and inhibiting inflammasome activation could be novel therapeutic targets for AA.


Subject(s)
Alopecia Areata , Inflammasomes , Humans , NLR Family, Pyrin Domain-Containing 3 Protein , Mitophagy/physiology , Reactive Oxygen Species , Protein Kinases , PTEN Phosphohydrolase
4.
Int J Mol Sci ; 25(1)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38203337

ABSTRACT

Psoriasis is a chronic inflammatory skin disease characterized by epidermal hyperproliferation, aberrant differentiation of keratinocytes, and dysregulated immune responses. WW domain-containing oxidoreductase (WWOX) is a non-classical tumor suppressor gene that regulates multiple cellular processes, including proliferation, apoptosis, and migration. This study aimed to explore the possible role of WWOX in the pathogenesis of psoriasis. Immunohistochemical analysis showed that the expression of WWOX was increased in epidermal keratinocytes of both human psoriatic lesions and imiquimod-induced mice psoriatic model. Immortalized human epidermal keratinocytes were transduced with a recombinant adenovirus expressing microRNA specific for WWOX to downregulate its expression. Inflammatory responses were detected using Western blotting, real-time quantitative reverse transcription polymerase chain reaction (PCR), and enzyme-linked immunosorbent assay. In human epidermal keratinocytes, WWOX knockdown reduced nuclear factor-kappa B signaling and levels of proinflammatory cytokines induced by polyinosinic: polycytidylic acid [(poly(I:C)] in vitro. Furthermore, calcium chelator and protein kinase C (PKC) inhibitors significantly reduced poly(I:C)-induced inflammatory reactions. WWOX plays a role in the inflammatory reaction of epidermal keratinocytes by regulating calcium and PKC signaling. Targeting WWOX could be a novel therapeutic approach for psoriasis in the future.


Subject(s)
Dermatitis , Psoriasis , Animals , Humans , Mice , Disease Models, Animal , Inflammation , NF-kappa B , Psoriasis/chemically induced , Psoriasis/genetics , Tumor Suppressor Proteins/genetics , WW Domain-Containing Oxidoreductase/genetics
6.
Plant Pathol J ; 37(6): 681-686, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34897259

ABSTRACT

It is difficult to distinguish melanose and melanoses-like symptoms with the naked eye because they appear similar. To accurately detect melanose symptoms caused by Diaporthe citri from melanose-like symptoms, we developed PCR-based specific primers Dcitri by aligning the internal transcribed spacer (ITS) region of D. citri with the ITS of Diaporthe cytosporella, Diaporthe foeniculina, Colletotrichum gloeosporioides, Botrytis cinerea, Alternaria citri, and Fusarium oxysporum found on citrus peel. PCR results showed that the specific product was amplified in D. citri but not in other isolates including, C. gloeosporioides, B. cinerea, A. citri, F. oxysporum. In addition, specific products were observed in melanose symptoms caused by D. citri but not in melanose-like symptoms, such as copper-injury, sunscald, damages by yellow tea thrips, and pink citrus rust mite. Using the Dcitri primers developed in this study, it is expected that melanose caused by D. citri could be accurately distinguished from melanose-like symptoms.

SELECTION OF CITATIONS
SEARCH DETAIL
...