Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Technol Adv Mater ; 20(1): 389-400, 2019.
Article in English | MEDLINE | ID: mdl-31068986

ABSTRACT

Ga-doped ZnO (GZO)-graded layer, facilitating electron extraction from electron transport layer, was integrated on the surface of transparent indium tin oxide (ITO) cathode by using graded sputtering technique to improve the performance of planar n-i-p perovskite solar cells (PSCs). The thickness of graded GZO layer was controlled to optimize GZO-indium tin oxide (ITO) combined electrode for planar n-i-p PSCs. At optimized graded thickness of 15 nm, the GZO-ITO combined electrode showed an optical transmittance of 95%, a resistivity of 2.3 × 10-4 Ohm cm, a sheet resistance of 15.6 Ohm/square, and work function of 4.23 eV, which is well matched with the 4.0-eV lowest unoccupied molecular orbital of [6,6]-phenyl-C61-butyric acid methyl ester. Owing to enhanced extraction of electron by the graded GZO, the n-i-p PSC with GZO-ITO combined electrode showed higher power conversion efficiency (PCE) of 9.67% than the PCE (5.25%) of PSC with only ITO electrode without GZO-graded layer. In addition, the GZO integrated-ITO electrode acts as transparent electrode and electron extraction layer simultaneously due to graded mixing of the GZO at the surface region of ITO electrode.

2.
ACS Appl Mater Interfaces ; 11(18): 17028-17034, 2019 May 08.
Article in English | MEDLINE | ID: mdl-30990013

ABSTRACT

The interfacial properties of organolead halide perovskite solar cells (PSCs) affect the exciton and charge-transport dynamics significantly. Thus, proper modification of the interfaces between perovskite and charge-transport layers is an efficient method to increase the power conversion efficiency (PCE) of PSCs. In this work, we explore the effect of a nonionic surfactant, that is, Triton X-100 (TX) additive, in the poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) hole-transport layer. The electronic structure of TX-modified PEDOT:PSS is investigated with ultraviolet/X-ray photoelectron spectroscopy and X-ray absorption spectroscopy with various TX concentrations. The surface of the TX-modified PEDOT:PSS layer showed high TX content, and thus the semimetallic properties of PEDOT:PSS were suppressed conspicuously by its insulating nature. With the TX-modified PEDOT:PSS, the PCE of methylammonium lead iodide (MAPbI3) PSCs increased significantly. To elucidate the origin of the improved device performance, the electrical properties and photoluminescence were investigated comprehensively. Consequently, it was found that the TX additive inhibits interface recombination between PEDOT:PSS and MAPbI3, which is caused by the suppression of semimetallic properties of the PEDOT:PSS surface. Hence, we fabricated flexible PSCs successfully using a graphene electrode and TX-modified PEDOT:PSS.

SELECTION OF CITATIONS
SEARCH DETAIL
...