Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Gigascience ; 8(6)2019 06 01.
Article in English | MEDLINE | ID: mdl-31141611

ABSTRACT

BACKGROUND: Quantitative trait locus (QTL) mapping using bulk segregants is an effective approach for identifying genetic variants associated with phenotypes of interest in model organisms. By exploiting next-generation sequencing technology, the QTL mapping accuracy can be improved significantly, providing a valuable means to annotate new genetic variants. However, setting up a comprehensive analysis framework for this purpose is a time-consuming and error-prone task, posing many challenges for scientists with limited experience in this domain. RESULTS: Here, we present BSA4Yeast, a comprehensive web application for QTL mapping via bulk segregant analysis of yeast sequencing data. The software provides an automated and efficiency-optimized data processing, up-to-date functional annotations, and an interactive web interface to explore identified QTLs. CONCLUSIONS: BSA4Yeast enables researchers to identify plausible candidate genes in QTL regions efficiently in order to validate their genetic variations experimentally as causative for a phenotype of interest. BSA4Yeast is freely available at https://bsa4yeast.lcsb.uni.lu.


Subject(s)
Chromosome Mapping/methods , High-Throughput Nucleotide Sequencing/methods , Quantitative Trait Loci , Saccharomyces cerevisiae/genetics , Software , Genetic Linkage , Genome, Fungal , Internet
2.
Brain Commun ; 1(1): fcz019, 2019.
Article in English | MEDLINE | ID: mdl-32954262

ABSTRACT

Mutations in ATP13A2 (PARK9) are causally linked to the rare neurodegenerative disorders Kufor-Rakeb syndrome, hereditary spastic paraplegia and neuronal ceroid lipofuscinosis. This suggests that ATP13A2, a lysosomal cation-transporting ATPase, plays a crucial role in neuronal cells. The heterogeneity of the clinical spectrum of ATP13A2-associated disorders is not yet well understood and currently, these diseases remain without effective treatment. Interestingly, ATP13A2 is widely conserved among eukaryotes, and the yeast model for ATP13A2 deficiency was the first to indicate a role in heavy metal homeostasis, which was later confirmed in human cells. In this study, we show that the deletion of YPK9 (the yeast orthologue of ATP13A2) in Saccharomyces cerevisiae leads to growth impairment in the presence of Zn2+, Mn2+, Co2+ and Ni2+, with the strongest phenotype being observed in the presence of zinc. Using the ypk9Δ mutant, we developed a high-throughput growth rescue screen based on the Zn2+ sensitivity phenotype. Screening of two libraries of Food and Drug Administration-approved drugs identified 11 compounds that rescued growth. Subsequently, we generated a zebrafish model for ATP13A2 deficiency and found that both partial and complete loss of atp13a2 function led to increased sensitivity to Mn2+. Based on this phenotype, we confirmed two of the drugs found in the yeast screen to also exert a rescue effect in zebrafish-N-acetylcysteine, a potent antioxidant, and furaltadone, a nitrofuran antibiotic. This study further supports that combining the high-throughput screening capacity of yeast with rapid in vivo drug testing in zebrafish can represent an efficient drug repurposing strategy in the context of rare inherited disorders involving conserved genes. This work also deepens the understanding of the role of ATP13A2 in heavy metal detoxification and provides a new in vivo model for investigating ATP13A2 deficiency.

3.
FEBS J ; 285(18): 3376-3401, 2018 09.
Article in English | MEDLINE | ID: mdl-30098110

ABSTRACT

NADHX and NADPHX are hydrated and redox inactive forms of the NADH and NADPH cofactors, known to inhibit several dehydrogenases in vitro. A metabolite repair system that is conserved in all domains of life and that comprises the two enzymes NAD(P)HX dehydratase and NAD(P)HX epimerase, allows reconversion of both the S- and R-epimers of NADHX and NADPHX to the normal cofactors. An inherited deficiency in this system has recently been shown to cause severe neurometabolic disease in children. Although evidence for the presence of NAD(P)HX has been obtained in plant and human cells, little is known about the mechanism of formation of these derivatives in vivo and their potential effects on cell metabolism. Here, we show that NAD(P)HX dehydratase deficiency in yeast leads to an important, temperature-dependent NADHX accumulation in quiescent cells with a concomitant depletion of intracellular NAD+ and serine pools. We demonstrate that NADHX potently inhibits the first step of the serine synthesis pathway in yeast. Human cells deficient in the NAD(P)HX dehydratase also accumulated NADHX and showed decreased viability. In addition, those cells consumed more glucose and produced more lactate, potentially indicating impaired mitochondrial function. Our results provide first insights into how NADHX accumulation affects cellular functions and pave the way for a better understanding of the mechanism(s) underlying the rapid and severe neurodegeneration leading to early death in NADHX repair-deficient children.


Subject(s)
Metabolic Diseases/metabolism , Metabolic Diseases/pathology , Metabolome , Racemases and Epimerases/deficiency , Saccharomyces cerevisiae/enzymology , Cells, Cultured , Humans , NAD/metabolism , NADP/metabolism , Saccharomyces cerevisiae/genetics , Serine/metabolism
4.
NPJ Aging Mech Dis ; 4: 3, 2018.
Article in English | MEDLINE | ID: mdl-29560271

ABSTRACT

Aging is a complex trait of broad scientific interest, especially because of its intrinsic link with common human diseases. Pioneering work on aging-related mechanisms has been made in Saccharomyces cerevisiae, mainly through the use of deletion collections isogenic to the S288c reference strain. In this study, using a recently published high-throughput approach, we quantified chronological life span (CLS) within a collection of 58 natural strains across seven different conditions. We observed a broad aging variability suggesting the implication of diverse genetic and environmental factors in chronological aging control. Two major Quantitative Trait Loci (QTLs) were identified within a biparental population obtained by crossing two natural isolates with contrasting aging behavior. Detection of these QTLs was dependent upon the nature and concentration of the carbon sources available for growth. In the first QTL, the RIM15 gene was identified as major regulator of aging under low glucose condition, lending further support to the importance of nutrient-sensing pathways in longevity control under calorie restriction. In the second QTL, we could show that the SER1 gene, encoding a conserved aminotransferase of the serine synthesis pathway not previously linked to aging, is causally associated with CLS regulation, especially under high glucose condition. These findings hint toward a new mechanism of life span control involving a trade-off between serine synthesis and aging, most likely through modulation of acetate and trehalose metabolism. More generally it shows that genetic linkage studies across natural strains represent a promising strategy to further unravel the molecular basis of aging.

5.
G3 (Bethesda) ; 6(4): 1063-71, 2016 04 07.
Article in English | MEDLINE | ID: mdl-26888866

ABSTRACT

It is now clear that the exploration of the genetic and phenotypic diversity of nonmodel species greatly improves our knowledge in biology. In this context, we recently launched a population genomic analysis of the protoploid yeast Lachancea kluyveri (formerly Saccharomyces kluyveri), highlighting a broad genetic diversity (π = 17 × 10(-3)) compared to the yeast model organism, S. cerevisiae (π = 4 × 10(-3)). Here, we sought to generate a comprehensive view of the phenotypic diversity in this species. In total, 27 natural L. kluyveri isolates were subjected to trait profiling using the following independent approaches: (i) analyzing growth in 55 growth conditions and (ii) investigating 501 morphological changes at the cellular level. Despite higher genetic diversity, the fitness variance observed in L. kluyveri is lower than that in S. cerevisiae However, morphological features show an opposite trend. In addition, there is no correlation between the origins (ecological or geographical) of the isolate and the phenotypic patterns, demonstrating that trait variation follows neither population history nor source environment in L. kluyveri Finally, pairwise comparisons between growth rate correlation and genetic diversity show a clear decrease in phenotypic variability linked to genome variation increase, whereas no such a trend was identified for morphological changes. Overall, this study reveals for the first time the phenotypic diversity of a distantly related species to S. cerevisiae Given its genetic properties, L. kluyveri might be useful in further linkage mapping analyses of complex traits, and could ultimately provide a better insight into the evolution of the genotype-phenotype relationship across yeast species.


Subject(s)
Cell Shape/genetics , Genetic Fitness , Phenotype , Selection, Genetic , Yeasts/cytology , Yeasts/genetics , Chromosome Mapping , Cluster Analysis , Energy Metabolism , Environment , Genetic Association Studies , Genetic Linkage , Genetic Variation , Quantitative Trait, Heritable , Species Specificity , Yeasts/metabolism
6.
J Biol Chem ; 291(12): 6036-58, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26774271

ABSTRACT

The D or L form of 2-hydroxyglutarate (2HG) accumulates in certain rare neurometabolic disorders, and high D-2-hydroxyglutarate (D-2HG) levels are also found in several types of cancer. Although 2HG has been detected in Saccharomyces cerevisiae, its metabolism in yeast has remained largely unexplored. Here, we show that S. cerevisiae actively forms the D enantiomer of 2HG. Accordingly, the S. cerevisiae genome encodes two homologs of the human D-2HG dehydrogenase: Dld2, which, as its human homolog, is a mitochondrial protein, and the cytosolic protein Dld3. Intriguingly, we found that a dld3Δ knock-out strain accumulates millimolar levels of D-2HG, whereas a dld2Δ knock-out strain displayed only very moderate increases in D-2HG. Recombinant Dld2 and Dld3, both currently annotated as D-lactate dehydrogenases, efficiently oxidized D-2HG to α-ketoglutarate. Depletion of D-lactate levels in the dld3Δ, but not in the dld2Δ mutant, led to the discovery of a new type of enzymatic activity, carried by Dld3, to convert D-2HG to α-ketoglutarate, namely an FAD-dependent transhydrogenase activity using pyruvate as a hydrogen acceptor. We also provide evidence that Ser3 and Ser33, which are primarily known for oxidizing 3-phosphoglycerate in the main serine biosynthesis pathway, in addition reduce α-ketoglutarate to D-2HG using NADH and represent major intracellular sources of D-2HG in yeast. Based on our observations, we propose that D-2HG is mainly formed and degraded in the cytosol of S. cerevisiae cells in a process that couples D-2HG metabolism to the shuttling of reducing equivalents from cytosolic NADH to the mitochondrial respiratory chain via the D-lactate dehydrogenase Dld1.


Subject(s)
Alcohol Oxidoreductases/metabolism , Glutarates/metabolism , L-Lactate Dehydrogenase (Cytochrome)/metabolism , Lactic Acid/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Alcohol Oxidoreductases/chemistry , Alcohol Oxidoreductases/genetics , Carbohydrate Metabolism , Gene Expression , Ketoglutarate Dehydrogenase Complex/metabolism , Kinetics , L-Lactate Dehydrogenase (Cytochrome)/chemistry , L-Lactate Dehydrogenase (Cytochrome)/genetics , Lactic Acid/chemistry , Oxaloacetic Acid/chemistry , Phosphoglycerate Dehydrogenase/genetics , Phosphoglycerate Dehydrogenase/metabolism , Pyruvic Acid/chemistry , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Serine/metabolism , Substrate Specificity
7.
PLoS One ; 10(3): e0119807, 2015.
Article in English | MEDLINE | ID: mdl-25822370

ABSTRACT

In microorganisms, and more particularly in yeasts, a standard phenotyping approach consists in the analysis of fitness by growth rate determination in different conditions. One growth assay that combines high throughput with high resolution involves the generation of growth curves from 96-well plate microcultivations in thermostated and shaking plate readers. To push the throughput of this method to the next level, we have adapted it in this study to the use of 384-well plates. The values of the extracted growth parameters (lag time, doubling time and yield of biomass) correlated well between experiments carried out in 384-well plates as compared to 96-well plates or batch cultures, validating the higher-throughput approach for phenotypic screens. The method is not restricted to the use of the budding yeast Saccharomyces cerevisiae, as shown by consistent results for other species selected from the Hemiascomycete class. Furthermore, we used the 384-well plate microcultivations to develop and validate a higher-throughput assay for yeast Chronological Life Span (CLS), a parameter that is still commonly determined by a cumbersome method based on counting "Colony Forming Units". To accelerate analysis of the large datasets generated by the described growth and aging assays, we developed the freely available software tools GATHODE and CATHODE. These tools allow for semi-automatic determination of growth parameters and CLS behavior from typical plate reader output files. The described protocols and programs will increase the time- and cost-efficiency of a number of yeast-based systems genetics experiments as well as various types of screens.


Subject(s)
High-Throughput Screening Assays/methods , Yeasts/growth & development , Ascomycota/growth & development , Biomass , High-Throughput Screening Assays/statistics & numerical data , Kinetics , Mycology/methods , Mycology/statistics & numerical data , Phenotype , Saccharomyces cerevisiae/growth & development , Salinity , Software
8.
PLoS One ; 7(10): e47834, 2012.
Article in English | MEDLINE | ID: mdl-23112855

ABSTRACT

Yeasts are leading model organisms for mitochondrial genome studies. The explosion of complete sequence of yeast mitochondrial (mt) genomes revealed a wide diversity of organization and structure between species. Recently, genome-wide polymorphism survey on the mt genome of isolates of a single species, Lachancea kluyveri, was also performed. To compare the mitochondrial genome evolution at two hierarchical levels: within and among closely related species, we focused on five species of the Lachancea genus, which are close relatives of L. kluyveri. Hence, we sequenced the complete mt genome of L. dasiensis, L. nothofagi, L. mirantina, L. fantastica and L. meyersii. The phylogeny of the Lachancea genus was explored using these data. Analysis of intra- and interspecific variability across the whole Lachancea genus led to the same conclusions regarding the mitochondrial genome evolution. These genomes exhibit a similar architecture and are completely syntenic. Nevertheless, genome sizes vary considerably because of the variations of the intergenic regions and the intron content, contributing to mitochondrial genome plasticity. The high variability of the intergenic regions stands in contrast to the high level of similarity of protein sequences. Quantification of the selective constraints clearly revealed that most of the mitochondrial genes are under purifying selection in the whole genus.


Subject(s)
DNA, Fungal/genetics , Genome, Mitochondrial , Yeasts/genetics , DNA, Mitochondrial/genetics , Evolution, Molecular , Genes, Fungal , Genomics , Phylogeny
9.
G3 (Bethesda) ; 2(9): 1103-11, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22973548

ABSTRACT

Mitochondria are organelles, which play a key role in some essential functions, including respiration, metabolite biosynthesis, ion homeostasis, and apoptosis. The vast numbers of mitochondrial DNA (mtDNA) sequences of various yeast species, which have recently been published, have also helped to elucidate the structural diversity of these genomes. Although a large corpus of data are now available on the diversity of yeast species, little is known so far about the mtDNA diversity in single yeast species. To study the genetic variations occurring in the mtDNA of wild yeast isolates, we performed a genome-wide polymorphism survey on the mtDNA of 18 Lachancea kluyveri (formerly Saccharomyces kluyveri) strains. We determined the complete mt genome sequences of strains isolated from various geographical locations (in North America, Asia, and Europe) and ecological niches (Drosophila, tree exudates, soil). The mt genome of the NCYC 543 reference strain is 51,525 bp long. It contains the same core of genes as Lachancea thermotolerans, the nearest relative to L. kluyveri. To explore the mt genome variations in a single yeast species, we compared the mtDNAs of the 18 isolates. The phylogeny and population structure of L. kluyveri provide clear-cut evidence for the existence of well-defined geographically isolated lineages. Although these genomes are completely syntenic, their size and the intron content were found to vary among the isolates studied. These genomes are highly polymorphic, showing an average diversity of 28.5 SNPs/kb and 6.6 indels/kb. Analysis of the SNP and indel patterns showed the existence of a particularly high overall level of polymorphism in the intergenic regions. The dN/dS ratios obtained are consistent with purifying selection in all these genes, with the noteworthy exception of the VAR1 gene, which gave a very high ratio. These data suggest that the intergenic regions have evolved very fast in yeast mitochondrial genomes.


Subject(s)
Evolution, Molecular , Genetic Variation , Genome, Mitochondrial , Saccharomyces/genetics , DNA, Mitochondrial , Introns , Open Reading Frames , Phylogeny , Polymorphism, Single Nucleotide , Saccharomyces/classification
10.
BMC Genomics ; 12: 331, 2011 Jun 28.
Article in English | MEDLINE | ID: mdl-21711526

ABSTRACT

BACKGROUND: Gross chromosomal rearrangements (GCRs) such as aneuploidy are key factors in genome evolution as well as being common features of human cancer. Their role in tumour initiation and progression has not yet been completely elucidated and the effects of additional chromosomes in cancer cells are still unknown. Most previous studies in which Saccharomyces cerevisiae has been used as a model for cancer cells have been carried out in the haploid context. To obtain new insights on the role of ploidy, the cellular effects of GCRs were compared between the haploid and diploid contexts. RESULTS: A total number of 21 haploid and diploid S. cerevisiae strains carrying various types of GCRs (aneuploidies, nonreciprocal translocations, segmental duplications and deletions) were studied with a view to determining the effects of ploidy on the cellular responses. Differences in colony and cell morphology as well as in the growth rates were observed between mutant and parental strains. These results suggest that cells are impaired physiologically in both contexts. We also investigated the variation in genomic expression in all the mutants. We observed that gene expression was significantly altered. The data obtained here clearly show that genes involved in energy metabolism, especially in the tricarboxylic acid cycle, are up-regulated in all these mutants. However, the genes involved in the composition of the ribosome or in RNA processing are down-regulated in diploids but up-regulated in haploids. Over-expression of genes involved in the regulation of the proteasome was found to occur only in haploid mutants. CONCLUSION: The present comparisons between the cellular responses of strains carrying GCRs in different ploidy contexts bring to light two main findings. First, GCRs induce a general stress response in all studied mutants, regardless of their ploidy. Secondly, the ploidy context plays a crucial role in maintaining the stoichiometric balance of the proteins: the translation rates decrease in diploid strains, whereas the excess protein synthesized is degraded in haploids by proteasome activity.


Subject(s)
Chromosome Aberrations , Chromosomes, Fungal/genetics , Ploidies , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics , Adenosine Triphosphate/biosynthesis , Diploidy , Fungal Proteins/biosynthesis , Fungal Proteins/genetics , Saccharomyces cerevisiae/metabolism , Transcriptome , Up-Regulation
11.
FEMS Yeast Res ; 11(4): 334-44, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21272231

ABSTRACT

Transposable element (TE) evolution in genomes has mostly been deduced from comparative genome analyses. TEs often account for a large proportion of the eukaryotic nuclear genome (up to 50%, depending on the species). Among the many existing genomic copies, only a small fraction may contribute to the mobility of a TE family. We have identified here, using a genetic screening procedure to trap Ty1 long terminal repeat-retrotransposon insertions in Saccharomyces cerevisiae, which among the populations of resident Ty1 copies are responsible for Ty1 mobility. Although the newly inserted Ty1 copies resulting from a single round of transposition were found to originate from a limited subset of Ty1 resident copies, they showed a high degree of diversity at the nucleotide level, mainly due to the reverse transcription-mediated recombination. In this process, highly expressed and strikingly nonautonomous mutant Ty1 were found to be the most frequently used resident copies, which suggests that nonautonomous elements play a key role in the dynamics of the Ty1 family.


Subject(s)
Genome, Fungal , Retroelements/genetics , Saccharomyces cerevisiae/genetics , DNA, Fungal/genetics , Genetic Variation , Recombination, Genetic , Reverse Transcriptase Polymerase Chain Reaction , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/cytology , Sequence Alignment , Terminal Repeat Sequences/genetics
12.
Curr Genet ; 56(6): 507-15, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20830585

ABSTRACT

Yeasts of the Pichia genus have been isolated from different natural environments. Phylogenies based on multigene sequence analysis have shown that the genus is polyphyletic. Some species of this genus are member of the CTG group. In order to have a better insight into the relationship among species assigned to the yeast genera Pichia into the CTG group, we first sequenced the mitochondrial genome of the osmotolerant yeast Pichia farinosa. We then compared this genome with mitochondrial genomes of yeasts of the CTG group. The P. farinosa mitochondrial DNA is a circular-mapping genome of 32,065 bp, which contains 43 genes transcribed from both strands. It contains a complete set of tRNAs, the small and the large rRNAs, as well as 14 protein-coding genes. Yeasts of the CTG group contain the same core of mitochondrial genes. Phylogenetic analysis based on mitochondrial sequences clearly shows that the CTG group is divided into two distinct clades: the first one contains diploid Candida species, whereas the second mainly contains haploid Pichia species. Moreover, this analysis provides clear evidence that Pichia farinosa and Pichia sorbitophila, which were known to be unique species, are two distinct species.


Subject(s)
DNA, Mitochondrial/analysis , Genome, Mitochondrial/genetics , Pichia/genetics , Amino Acid Sequence , Gene Order , Genetic Code , Genetic Speciation , Genome, Fungal , Inteins/genetics , Models, Biological , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Species Specificity , Transcription, Genetic/physiology
13.
FEMS Yeast Res ; 9(6): 903-10, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19594828

ABSTRACT

Here, we report the complete nucleotide sequence of the 39 107-bp mitochondrial genome of the yeast Pichia sorbitophila. This genome is closely related to those of Candida parapsilosis and Debaryomyces hansenii, as judged from sequence similarities and synteny conservation. It encodes three subunits of cytochrome oxidase (COX1, COX2 and COX3), three subunits of ATP synthase (ATP6, ATP8 and ATP9), the seven subunits of NADH dehydrogenase (NAD1-6 and NAD4L), the apocytochrome b (COB), the large and small rRNAs and a complete set of tRNAs. Although the mitochondrial genome of P. sorbitophila contains the same core of mitochondrial genes observed in the ascomycetous yeasts, those coding for the RNAse P and the ribosomal protein VAR1p are missing. Moreover, the mtDNA of P. sorbitophila contains several introns in its genes and has the particularity of possessing an intron, which is not linked to any upstream exon.


Subject(s)
Genes, Fungal , Genes, Mitochondrial , Genome, Mitochondrial , Mitochondria/genetics , Pichia/genetics , Amino Acid Sequence , Candida/genetics , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Mitochondrial/chemistry , DNA, Mitochondrial/genetics , Debaryomyces/genetics , Molecular Sequence Data , Sequence Alignment , Sequence Analysis, DNA , Sequence Homology
SELECTION OF CITATIONS
SEARCH DETAIL
...