Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxidants (Basel) ; 9(11)2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33228093

ABSTRACT

This study determined acteoside and its content in Abeliophyllum distichum via HPLC/UV and LC/ESI-MS to obtain insights into the potential use of this plant as an antioxidant agent. Moreover, 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl (•OH), and O2- radical scavenging activity assays were performed to assess in vitro antioxidative activity. The DPPH, •OH, and O2- radical scavenging activities of A. distichum leaf EtOH extracts at a 250 µg/mL concentration were 88.32%, 94.48%, and 14.36%, respectively, whereas those of stem extracts at the same concentration were 88.15%, 88.99%, and 15.36%, respectively. The contents of acteoside in A. distichum leaves and stems were 162.11 and 29.68 mg/g, respectively. Acteoside was identified as the main antioxidant compound in A. distichum leaves, which resulted in DPPH, •OH, and O2- radical scavenging activities of 82.84%, 89.46%, and 30.31%, respectively, at a 25 µg/mL concentration. These results indicate that A. distichum leaves and stems containing the antioxidant acteoside can be used as natural ingredients for functional and nutritional supplements.

2.
J Anal Methods Chem ; 2014: 563702, 2014.
Article in English | MEDLINE | ID: mdl-25258697

ABSTRACT

The extraction efficiency of a number of solvent compositions for the improvement of bioactive compounds yield from S. baicalensis has been investigated. Also, free radical scavengers in the glycoside baicalin (BG), wogonoside (WG), aglycon baicalein (B), and wogonin (W) compounds of S. baicalensis were screened, identified, and quantified using coupled offline ABTS and online screening HPLC-ABTS assay. Increasing ethanol content fractions resulted in decreased extract yield of bioactive compounds. In this case, the best yield of 37.01 mg/g in BG, WG, B, and W compounds was obtained by a dipping method with an extraction time of 4 h. In addition, the yield (43.05%) and IC50 (34.04 µg/mL) determined through ABTS assay of the 60% aqueous ethanol extract were the most satisfactory of all solvent solutions tested. This result shows that an online screening HPLC-ABTS assay can be a powerful technique for the rapid characterization of bioactivity compounds in plant extracts. Moreover, their anti-inflammatory activities were evaluated via analyzed inhibitory effect on NO and inflammatory cytokine production. Furthermore, WG and W exhibited the strong inhibitory effects on inflammatory mediator production including NO, IL-6, and IL-1ß in LPS-stimulated RAW 264.7 macrophages.

3.
Immunobiology ; 219(11): 866-72, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25109435

ABSTRACT

BACKGROUND: Green tea polyphenol epigallocatechin-3-gallate (EGCG) has the potential to impact a variety of inflammation-related diseases; however, the anti-inflammatory action of EGCG in endothelial cells has not been understood. Recently, we demonstrated that the 67-kDa laminin receptor (67LR) acts as a cell-surface EGCG receptor. AIM: This research was carried out to clarify the molecular basis for the down-regulation of toll-like receptor 4 (TLR4) signal transduction by EGCG in lipopolysaccharide (LPS)-stimulated endothelial cells. RESULTS: RNAi-mediated silencing of 67LR resulted in an abrogation of the inhibitory action of EGCG on the LPS-induced activation of downstream signaling pathways. Also, we found that EGCG induced a rapid upregulation of Toll-interacting protein (Tollip), a negative regulator of TLR signaling, through 67LR in endothelial cells. RNAi-mediated silencing of Tollip impaired the TLR4 signaling inhibitory activity of EGCG. Additionally, silencing of Tollip resulted in an abrogation of the inhibitory action of EGCG on the LPS-induced expressions of cell-associated adhesion molecules, such as ICAM-1 and VCAM-1. CONCLUSION: Taken together, these novel findings provide new insights into an understanding of negative regulatory mechanisms of the TLR4 signaling pathway and effective therapeutic intervention for the treatment of inflammatory disease.


Subject(s)
Catechin/analogs & derivatives , Endothelial Cells/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Receptors, Laminin/metabolism , Signal Transduction/drug effects , Toll-Like Receptor 4/metabolism , Animals , Catechin/pharmacology , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Gene Expression Regulation/drug effects , Humans , Intracellular Signaling Peptides and Proteins/genetics , Lipopolysaccharides/pharmacology , Mice , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , RNA Interference , RNA, Small Interfering/genetics , Receptors, Laminin/genetics , Toll-Like Receptor 4/genetics
4.
FEBS Open Bio ; 3: 106-11, 2013.
Article in English | MEDLINE | ID: mdl-23847758

ABSTRACT

This study evaluated the effect of gamma irradiation on the reduction of the toxicity of mistletoe lectin using both in vitro and in vivo models. To extract the lectin from mistletoe, an (NH4)2SO4 precipitation method was employed and the precipitant purified using a Sepharose 4B column to obtain the pure lectin fraction. Purified lectin was then gamma-irradiated at doses of 0, 5, 10, 15, and 20 kGy, or heated at 100 °C for 30 min. Toxic effects of non-irradiated, irradiated, and heat-treated lectins were tested using hemagglutination assays, cytotoxicity assays, hepatotoxicity, and a mouse survival test and immunological response was tested using cytokine production activity. Hemagglutination of lectin was remarkably decreased (P < 0.05) by irradiation at doses exceeding 10 kGy and with heat treatment. However, lectin irradiated with 5 kGy maintained its hemagglutination activity. The cytotoxicity of lectin was decreased by irradiation at doses over 5 kGy and with heat treatment. In experiments using mouse model, glutamate oxaloacetate transaminase (GOT) and glutamic pyruvic transaminase (GPT) levels were decreased in the group treated with the 5 kGy irradiated and heat-treated lectins as compared to the intact lectin, and it was also shown that 5 kGy irradiated and heat-treated lectins did not cause damage in liver tissue or mortality. In the result of immunological response, tumor necrosis factor (TNF-α) and interleukin (IL-6) levels were significantly (P < 0.05) increased in the 5 kGy gamma-irradiated lectin treated group. These results indicate that 5 kGy irradiated lectin still maintained the immunological response with reduction of toxicity. Therefore, gamma-irradiation may be an effective method for reducing the toxicity of lectin maintaining the immune response.

5.
Article in English | MEDLINE | ID: mdl-23781272

ABSTRACT

To identify the active compound arctigenin in Fructus Arctii (dried seed of medicinal plant Arctium lappa) and to elucidate the inhibitory mechanism in melanogenesis, we analyzed melanin content and tyrosinase activity on B16BL6 murine melanoma and melan-A cell cultures. Water extracts of Fructus Arctii were shown to inhibit tyrosinase activity in vitro and melanin content in α -melanocyte stimulating hormone-stimulated cells to similar levels as the well-known kojic acid and arbutin, respectively. The active compound arctigenin of Fructus Arctii displayed little or no cytotoxicity at all concentrations examined and decreased the relative melanin content and tyrosinase activity in a dose-dependent manner. Melanogenic inhibitory activity was also identified in vivo with zebrafish embryo. To determine the mechanism of inhibition, the effects of arctigenin on tyrosinase gene expression and tyrosinase promoter activity were examined. Also in addition, in the signaling cascade, arctigenin dose dependently decreased the cAMP level and promoted the phosphorylation of extracellular signal-regulated kinase. This result suggests that arctigenin downregulates cAMP and the tyrosinase enzyme through its gene promoter and subsequently upregulates extracellular signal-regulated kinase activity by increasing phosphorylation in the melanogenesis signaling pathway, which leads to a lower melanin content.

SELECTION OF CITATIONS
SEARCH DETAIL
...