Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Cancer Med ; 12(20): 20380-20395, 2023 10.
Article in English | MEDLINE | ID: mdl-37843231

ABSTRACT

BACKGROUND: TRAIL is an anticancer drug that induces cancer cell apoptosis by interacting with death receptors (DRs). However, owing to low cell-surface expression of DRs, certain colorectal cancer (CRC) cells resist TRAIL-induced apoptosis. Newcastle disease virus (NDV) infection can elevate DR protein expression in cancer cells, potentially influencing their TRAIL sensitivity. However, the precise mechanism by which NDV infection modulates DR expression and impacts TRAIL sensitivity in cancer cells remains unknown. METHODS: Herein, we developed nonpathogenic NDV VG/GA strain-based recombinant NDV (rNDV) and TRAIL gene-containing rNDV (rNDV-TRAIL). We observed that viral infections lead to increased DR and TRAIL expressions and activate signaling proteins involved in intrinsic and extrinsic apoptosis pathways. Experiments were conducted in vitro using TRAIL-resistant CRC cells (HT-29) and nonresistant CRC cells (HCT116) and in vivo using relevant mouse models. RESULTS: rNDV-TRAIL was found to exhibit better apoptotic efficacy than rNDV in CRC cells. Notably, rNDV-TRAIL had the stronger cancer cell-killing effect in TRAIL-resistant CRC cells. Western blot analyses showed that both rNDV and rNDV-TRAIL infections activate signaling proteins involved in the intrinsic and extrinsic apoptotic pathways. Notably, rNDV-TRAIL promotes concurrent intrinsic and extrinsic signal transduction in both HCT-116 and HT-29 cells. CONCLUSIONS: Therefore, rNDV-TRAIL infection effectively enhances DR expression in DR-depressed HT-29 cells. Moreover, the TRAIL protein expressed by rNDV-TRAIL effectively interacts with DR, leading to enhanced apoptosis in TRAIL-resistant HT-29 cells. Therefore, rNDV-TRAIL has potential as a promising therapeutic approach for treating TRAIL-resistant cancers.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Humans , Animals , Mice , Newcastle disease virus/genetics , Newcastle disease virus/metabolism , HT29 Cells , HCT116 Cells , Antineoplastic Agents/metabolism , Apoptosis , Colorectal Neoplasms/genetics , Colorectal Neoplasms/therapy , TNF-Related Apoptosis-Inducing Ligand/genetics
2.
Exp Mol Med ; 54(5): 626-638, 2022 05.
Article in English | MEDLINE | ID: mdl-35562586

ABSTRACT

Diabetes mellitus (DM) is a chronic metabolic disorder characterized by inappropriate hyperglycemia, which causes endothelial dysfunction and peripheral neuropathy, ultimately leading to multiple complications. One prevalent complication is diabetic erectile dysfunction (ED), which is more severe and more resistant to treatment than nondiabetic ED. The serum glycoprotein leucine-rich ɑ-2-glycoprotein 1 (LRG1) is a modulator of TGF-ß-mediated angiogenesis and has been proposed as a biomarker for a variety of diseases, including DM. Here, we found that the adhesion GPCR latrophilin-2 (LPHN2) is a TGF-ß-independent receptor of LRG1. By interacting with LPHN2, LRG1 promotes both angiogenic and neurotrophic processes in mouse tissue explants under hyperglycemic conditions. Preclinical studies in a diabetic ED mouse model showed that LRG1 administration into the penile tissue, which exhibits significantly increased LPHN2 expression, fully restores erectile function by rescuing vascular and neurological abnormalities. Further investigations revealed that PI3K, AKT, and NF-κB p65 constitute the key intracellular signaling pathway of the LRG1/LPHN2 axis, providing important mechanistic insights into LRG1-mediated angiogenesis and nerve regeneration in DM. Our findings suggest that LRG1 can be a potential new therapeutic option for treating aberrant peripheral blood vessels and neuropathy associated with diabetic complications, such as diabetic ED.


Subject(s)
Diabetes Mellitus , Erectile Dysfunction , Animals , Erectile Dysfunction/etiology , Glycoproteins/metabolism , Humans , Male , Mice , Neovascularization, Pathologic , Receptors, Peptide , Receptors, Transforming Growth Factor beta , Transforming Growth Factor beta/metabolism
3.
Endocrinol Metab (Seoul) ; 36(3): 661-671, 2021 06.
Article in English | MEDLINE | ID: mdl-34154043

ABSTRACT

BACKGROUND: The nature and role of the mitochondrial stress response in adipose tissue in relation to obesity are not yet known. To determine whether the mitochondrial unfolded protein response (UPRmt) in adipose tissue is associated with obesity in humans and rodents. METHODS: Visceral adipose tissue (VAT) was obtained from 48 normoglycemic women who underwent surgery. Expression levels of mRNA and proteins were measured for mitochondrial chaperones, intrinsic proteases, and components of electron-transport chains. Furthermore, we systematically analyzed metabolic phenotypes with a large panel of isogenic BXD inbred mouse strains and Genotype-Tissue Expression (GTEx) data. RESULTS: In VAT, expression of mitochondrial chaperones and intrinsic proteases localized in inner and outer mitochondrial membranes was not associated with body mass index (BMI), except for the Lon protease homolog, mitochondrial, and the corresponding gene LONP1, which showed high-level expression in the VAT of overweight or obese individuals. Expression of LONP1 in VAT positively correlated with BMI. Analysis of the GTEx database revealed that elevation of LONP1 expression is associated with enhancement of genes involved in glucose and lipid metabolism in VAT. Mice with higher Lonp1 expression in adipose tissue had better systemic glucose metabolism than mice with lower Lonp1 expression. CONCLUSION: Expression of mitochondrial LONP1, which is involved in the mitochondrial quality control stress response, was elevated in the VAT of obese individuals. In a bioinformatics analysis, high LONP1 expression in VAT was associated with enhanced glucose and lipid metabolism.


Subject(s)
Glucose , Intra-Abdominal Fat , Adipose Tissue/metabolism , Animals , Female , Lipid Metabolism , Mice , Obesity/metabolism
4.
iScience ; 24(3): 102181, 2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33718833

ABSTRACT

Perturbation of mitochondrial proteostasis provokes cell autonomous and cell non-autonomous responses that contribute to homeostatic adaptation. Here, we demonstrate distinct metabolic effects of hepatic metabokines as cell non-autonomous factors in mice with mitochondrial OxPhos dysfunction. Liver-specific mitochondrial stress induced by a loss-of-function mutation in Crif1 (LKO) leads to aberrant oxidative phosphorylation and promotes the mitochondrial unfolded protein response. LKO mice are highly insulin sensitive and resistant to diet-induced obesity. The hepatocytes of LKO mice secrete large quantities of metabokines, including GDF15 and FGF21, which confer metabolic benefits. We evaluated the metabolic phenotypes of LKO mice with global deficiency of GDF15 or FGF21 and show that GDF15 regulates body and fat mass and prevents diet-induced hepatic steatosis, whereas FGF21 upregulates insulin sensitivity, energy expenditure, and thermogenesis in white adipose tissue. This study reveals that the mitochondrial integrated stress response (ISRmt) in liver mediates metabolic adaptation through hepatic metabokines.

5.
Endocrinol Metab (Seoul) ; 36(1): 1-11, 2021 02.
Article in English | MEDLINE | ID: mdl-33677920

ABSTRACT

Paracrine interactions are imperative for the maintenance of adipose tissue intercellular homeostasis, and intracellular organelle dysfunction results in local and systemic alterations in metabolic homeostasis. It is currently accepted that mitochondrial proteotoxic stress activates the mitochondrial unfolded protein response (UPRmt) in vitro and in vivo. The induction of mitochondrial chaperones and proteases during the UPRmt is a key cell-autonomous mechanism of mitochondrial quality control. The UPRmt also affects systemic metabolism through the secretion of cell non-autonomous peptides and cytokines (hereafter, metabokines). Mitochondrial function in adipose tissue plays a pivotal role in whole-body metabolism and human diseases. Despite continuing interest in the role of the UPRmt and quality control pathways of mitochondria in energy metabolism, studies on the roles of the UPRmt and metabokines in white adipose tissue are relatively sparse. Here, we describe the role of the UPRmt in adipose tissue, including adipocytes and resident macrophages, and the interactive roles of cell non-autonomous metabokines, particularly growth differentiation factor 15, in local adipose cellular homeostasis and systemic energy metabolism.


Subject(s)
Adipose Tissue, White , Mitochondria , Adipose Tissue/metabolism , Adipose Tissue, White/metabolism , Homeostasis , Humans , Mitochondria/metabolism , Unfolded Protein Response
6.
Cell Metab ; 33(2): 334-349.e6, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33535098

ABSTRACT

Low-grade mitochondrial stress can promote health and longevity, a phenomenon termed mitohormesis. Here, we demonstrate the opposing metabolic effects of low-level and high-level mitochondrial ribosomal (mitoribosomal) stress in hypothalamic proopiomelanocortin (POMC) neurons. POMC neuron-specific severe mitoribosomal stress due to Crif1 homodeficiency causes obesity in mice. By contrast, mild mitoribosomal stress caused by Crif1 heterodeficiency in POMC neurons leads to high-turnover metabolism and resistance to obesity. These metabolic benefits are mediated by enhanced thermogenesis and mitochondrial unfolded protein responses (UPRmt) in distal adipose tissues. In POMC neurons, partial Crif1 deficiency increases the expression of ß-endorphin (ß-END) and mitochondrial DNA-encoded peptide MOTS-c. Central administration of MOTS-c or ß-END recapitulates the adipose phenotype of Crif1 heterodeficient mice, suggesting these factors as potential mediators. Consistently, regular running exercise at moderate intensity stimulates hypothalamic MOTS-c/ß-END expression and induces adipose tissue UPRmt and thermogenesis. Our findings indicate that POMC neuronal mitohormesis may underlie exercise-induced high-turnover metabolism.


Subject(s)
Hypothalamus/metabolism , Mitochondria/metabolism , Neurons/metabolism , Physical Conditioning, Animal , Pro-Opiomelanocortin/metabolism , Animals , Cell Line, Tumor , Energy Metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic
7.
Diabetologia ; 63(4): 837-852, 2020 04.
Article in English | MEDLINE | ID: mdl-31925461

ABSTRACT

AIMS/HYPOTHESIS: Mitochondrial oxidative phosphorylation (OxPhos) is essential for energy production and survival. However, the tissue-specific and systemic metabolic effects of OxPhos function in adipocytes remain incompletely understood. METHODS: We used adipocyte-specific Crif1 (also known as Gadd45gip1) knockout (AdKO) mice with decreased adipocyte OxPhos function. AdKO mice fed a normal chow or high-fat diet were evaluated for glucose homeostasis, weight gain and energy expenditure (EE). RNA sequencing of adipose tissues was used to identify the key mitokines affected in AdKO mice, which included fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15). For in vitro analysis, doxycycline was used to pharmacologically decrease OxPhos in 3T3L1 adipocytes. To identify the effects of GDF15 and FGF21 on the metabolic phenotype of AdKO mice, we generated AdKO mice with global Gdf15 knockout (AdGKO) or global Fgf21 knockout (AdFKO). RESULTS: Under high-fat diet conditions, AdKO mice were resistant to weight gain and exhibited higher EE and improved glucose tolerance. In vitro pharmacological and in vivo genetic inhibition of OxPhos in adipocytes significantly upregulated mitochondrial unfolded protein response-related genes and secretion of mitokines such as GDF15 and FGF21. We evaluated the metabolic phenotypes of AdGKO and AdFKO mice, revealing that GDF15 and FGF21 differentially regulated energy homeostasis in AdKO mice. Both mitokines had beneficial effects on obesity and insulin resistance in the context of decreased adipocyte OxPhos, but only GDF15 regulated EE in AdKO mice. CONCLUSIONS/INTERPRETATION: The present study demonstrated that the adipose tissue adaptive mitochondrial stress response affected systemic energy homeostasis via cell-autonomous and non-cell-autonomous pathways. We identified novel roles for adipose OxPhos and adipo-mitokines in the regulation of systemic glucose homeostasis and EE, which facilitated adaptation of an organism to local mitochondrial stress.


Subject(s)
Adipocytes/metabolism , Cell Cycle Proteins/genetics , Energy Metabolism/genetics , Obesity/genetics , Adipocytes/pathology , Animals , Cell Cycle Proteins/metabolism , Diet, High-Fat , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Obese , Obesity/metabolism , Obesity/prevention & control , Organ Specificity/genetics , Oxidative Phosphorylation
8.
Biochem Biophys Res Commun ; 503(3): 1805-1811, 2018 09 10.
Article in English | MEDLINE | ID: mdl-30072100

ABSTRACT

Isocitrate dehydrogenase 2 (IDH2) is an essential enzyme in the mitochondrial antioxidant system, which produces nicotinamide adenine dinucleotide phosphate, and thereby defends against oxidative stress. We have shown that IDH2 downregulation results in mitochondrial dysfunction and reactive oxygen species (ROS) generation in mouse endothelial cells. The redox enzyme p66shc is a key factor in regulating the level of ROS in endothelial cells. In this study, we hypothesized that IDH2 knockdown-induced mitochondrial dysfunction stimulates endothelial inflammation, which might be regulated by p66shc-mediated oxidative stress. Our results showed that IDH2 downregulation led to mitochondrial dysfunction by decreasing the expression of mitochondrial oxidative phosphorylation complexes I, II, and IV, reducing oxygen consumption, and depolarizing mitochondrial membrane potential in human umbilical vein endothelial cells (HUVECs). The dysfunction not only increased mitochondrial ROS levels but also activated p66shc expression in HUVECs and IDH2 knockout mice. IDH2 deficiency increased intercellular adhesion molecule (ICAM)-1 expression and mRNA levels of pro-inflammatory cytokines (tumor necrosis factor [TNF]-α, and interleukin [IL]-1ß) in HUVECs. The mRNA expression of ICAM-1 in endothelial cells and plasma levels of TNF-α and IL-1ß were also markedly elevated in IDH2 knockout mice. However, p66shc knockdown rescued IDH2 deficiency-induced mitochondrial ROS levels, monocyte adhesion, ICAM-1, TNF-α, and IL-1ß expression in HUVECs. These findings suggest that IDH2 deficiency induced endothelial inflammation via p66shc-mediated mitochondrial oxidative stress.


Subject(s)
Endothelial Cells/metabolism , Inflammation/metabolism , Isocitrate Dehydrogenase/deficiency , Mitochondria/metabolism , Oxidative Stress , Animals , Cells, Cultured , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout
9.
Nat Commun ; 9(1): 1551, 2018 04 19.
Article in English | MEDLINE | ID: mdl-29674655

ABSTRACT

Oxidative functions of adipose tissue macrophages control the polarization of M1-like and M2-like phenotypes, but whether reduced macrophage oxidative function causes systemic insulin resistance in vivo is not clear. Here, we show that mice with reduced mitochondrial oxidative phosphorylation (OxPhos) due to myeloid-specific deletion of CR6-interacting factor 1 (Crif1), an essential mitoribosomal factor involved in biogenesis of OxPhos subunits, have M1-like polarization of macrophages and systemic insulin resistance with adipose inflammation. Macrophage GDF15 expression is reduced in mice with impaired oxidative function, but induced upon stimulation with rosiglitazone and IL-4. GDF15 upregulates the oxidative function of macrophages, leading to M2-like polarization, and reverses insulin resistance in ob/ob mice and HFD-fed mice with myeloid-specific deletion of Crif1. Thus, reduced macrophage oxidative function controls systemic insulin resistance and adipose inflammation, which can be reversed with GDF15 and leads to improved oxidative function of macrophages.


Subject(s)
Insulin Resistance , Macrophages/metabolism , Obesity/metabolism , Oxidative Phosphorylation , Adipose Tissue , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Growth Differentiation Factor 15/genetics , Growth Differentiation Factor 15/metabolism , Interleukin-4/genetics , Interleukin-4/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mitochondria/metabolism , Obesity/genetics , Oxidative Stress
10.
PLoS One ; 13(2): e0192693, 2018.
Article in English | MEDLINE | ID: mdl-29474366

ABSTRACT

AIMS: CR6 interacting factor 1 (CRIF1) deficiency impairs mitochondrial oxidative phosphorylation complexes, contributing to increased mitochondrial and cellular reactive oxygen species (ROS) production. CRIF1 downregulation has also been revealed to decrease sirtuin 1 (SIRT1) expression and impair vascular function. Inhibition of SIRT1 disturbs oxidative energy metabolism and stimulates nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)-induced inflammation. Therefore, we hypothesized that both CRIF1 deficiency-induced mitochondrial ROS production and SIRT1 reduction play stimulatory roles in vascular inflammation. METHODS AND RESULTS: Plasma levels and mRNA expression of proinflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6) were markedly elevated in endothelium-specific CRIF1-knockout mice and CRIF1-silenced endothelial cells, respectively. Moreover, CRIF1 deficiency-induced vascular adhesion molecule-1 (VCAM-1) expression was consistently attenuated by the antioxidant N-acetyl-cysteine and NF-κB inhibitor (BAY11). We next showed that siRNA-mediated CRIF1 downregulation markedly activated NF-κB. SIRT1 overexpression not only rescued CRIF1 deficiency-induced NF-κB activation but also decreased inflammatory cytokines (TNF-α, IL-1ß, and IL-6) and VCAM-1 expression levels in endothelial cells. CONCLUSIONS: These results strongly suggest that CRIF1 deficiency promotes endothelial cell inflammation by increasing VCAM-1 expression, elevating inflammatory cytokines levels, and activating the transcription factor NF-κB, all of which were inhibited by SIRT1 overexpression.


Subject(s)
Cell Cycle Proteins/physiology , Down-Regulation , Nuclear Proteins/physiology , Sirtuin 1/genetics , Animals , Cell Cycle Proteins/genetics , Enzyme-Linked Immunosorbent Assay , Human Umbilical Vein Endothelial Cells , Humans , Mice , Nuclear Proteins/genetics , Oxidative Phosphorylation , Signal Transduction
11.
Diabetes ; 66(11): 2774-2788, 2017 11.
Article in English | MEDLINE | ID: mdl-28874416

ABSTRACT

T-helper type 2 (Th2) cytokines, including interleukin (IL)-13 and IL-4, produced in adipose tissue, are critical regulators of intra-adipose and systemic lipid and glucose metabolism. Furthermore, IL-13 is a potential therapy for insulin resistance in obese mouse models. Here, we examined mediators produced by adipocytes that are responsible for regulating systemic glucose homeostasis in response to Th2 cytokines. We used RNA sequencing data analysis of cultured adipocytes to screen factors secreted in response to recombinant IL-13. Recombinant IL-13 induced expression of growth differentiation factor 15 (GDF15) via the Janus kinase-activated STAT6 pathway. In vivo administration of α-galactosylceramide or IL-33 increased IL-4 and IL-13 production, thereby increasing GDF15 levels in adipose tissue and in plasma of mice; however, these responses were abrogated in STAT6 knockout mice. Moreover, administration of recombinant IL-13 to wild-type mice fed a high-fat diet (HFD) improved glucose intolerance; this was not the case for GDF15 knockout mice fed the HFD. Taken together, these data suggest that GDF15 is required for IL-13-induced improvement of glucose intolerance in mice fed an HFD. Thus, beneficial effects of Th2 cytokines on systemic glucose metabolism and insulin sensitivity are mediated by GDF15. These findings open up a potential pharmacological route for reversing insulin resistance associated with obesity.


Subject(s)
Blood Glucose/physiology , Glucose/metabolism , Growth Differentiation Factor 15/metabolism , Th2 Cells/physiology , 3T3-L1 Cells , Animals , Diet, High-Fat , Glucose Intolerance , Growth Differentiation Factor 15/genetics , Interleukin-13/genetics , Interleukin-13/metabolism , Interleukin-13/physiology , Interleukin-33/administration & dosage , Interleukin-33/pharmacology , Interleukin-4/genetics , Interleukin-4/metabolism , Interleukin-4/physiology , Janus Kinases/genetics , Janus Kinases/metabolism , Mice , Mice, Inbred BALB C , Mice, Knockout , Protein Disulfide Reductase (Glutathione) , RNA Interference , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Recombinant Proteins/pharmacology , STAT6 Transcription Factor/genetics , STAT6 Transcription Factor/metabolism
12.
Nat Med ; 23(3): 361-367, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28191886

ABSTRACT

The voltage-gated cardiac Na+ channel (Nav1.5), encoded by the SCN5A gene, conducts the inward depolarizing cardiac Na+ current (INa) and is vital for normal cardiac electrical activity. Inherited loss-of-function mutations in SCN5A lead to defects in the generation and conduction of the cardiac electrical impulse and are associated with various arrhythmia phenotypes. Here we show that sirtuin 1 deacetylase (Sirt1) deacetylates Nav1.5 at lysine 1479 (K1479) and stimulates INa via lysine-deacetylation-mediated trafficking of Nav1.5 to the plasma membrane. Cardiac Sirt1 deficiency in mice induces hyperacetylation of K1479 in Nav1.5, decreases expression of Nav1.5 on the cardiomyocyte membrane, reduces INa and leads to cardiac conduction abnormalities and premature death owing to arrhythmia. The arrhythmic phenotype of cardiac-Sirt1-deficient mice recapitulated human cardiac arrhythmias resulting from loss of function of Nav1.5. Increased Sirt1 activity or expression results in decreased lysine acetylation of Nav1.5, which promotes the trafficking of Nav1.5 to the plasma membrane and stimulation of INa. As compared to wild-type Nav1.5, Nav1.5 with K1479 mutated to a nonacetylatable residue increases peak INa and is not regulated by Sirt1, whereas Nav1.5 with K1479 mutated to mimic acetylation decreases INa. Nav1.5 is hyperacetylated on K1479 in the hearts of patients with cardiomyopathy and clinical conduction disease. Thus, Sirt1, by deacetylating Nav1.5, plays an essential part in the regulation of INa and cardiac electrical activity.


Subject(s)
Action Potentials , Arrhythmias, Cardiac/genetics , Cardiomyopathies/metabolism , Membrane Potentials , Myocardium/metabolism , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Sirtuin 1/genetics , Acetylation , Animals , Echocardiography , Electrocardiography , HEK293 Cells , Heart/diagnostic imaging , Heart/physiopathology , Humans , Immunoblotting , Immunoprecipitation , Mass Spectrometry , Mice , Mice, Knockout , Myocytes, Cardiac , Patch-Clamp Techniques , Rats , Sirtuin 1/metabolism
13.
Antioxid Redox Signal ; 27(4): 234-249, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28117598

ABSTRACT

AIMS: Mitochondrial dysfunction has emerged as a major contributing factor to endothelial dysfunction and vascular disease, but the key mechanisms underlying mitochondrial dysfunction-induced endothelial dysfunction remain to be elucidated. In this study, we aim at determining whether mitochondrial dysfunction in endothelial cells plays a key role in vascular disease, by examining the phenotype of endothelial-specific CR6-interacting factor 1 (CRIF1) knockout mice. We also used siRNA-mediated downregulation of CRIF1 gene in the endothelial cells to study about the in vitro pathophysiological underlying mechanisms. RESULTS: Downregulation of CRIF1 in endothelial cells caused disturbances of mitochondrial oxidative phosphorylation complexes and membrane potential, leading to enhanced mitochondrial reactive oxygen species production. Gene silencing of CRIF1 results in decreased SIRT1 expression along with increased endothelial nitric oxide synthase (eNOS) acetylation, leading to reduced nitric oxide production both in vitro and in vivo. Endothelium-dependent vasorelaxation of aortic rings from CRIF1 knockout (KO) mice was considerably less than in wild-type mice, and it was partially recovered by Sirt1 overexpression in CRIF1 KO mice. INNOVATION: Our results show for the first time a relationship between mitochondrial dysfunction and impaired vascular function induced in CRIF1 deficiency conditions and also the possible underlying pathway involved. CONCLUSION: These findings indicate that CRIF1 plays an important role in maintaining mitochondrial and endothelial function through its effects on the SIRT1-eNOS pathway. Antioxid. Redox Signal. 27, 234-249.


Subject(s)
Cell Cycle Proteins/genetics , Endothelium, Vascular/pathology , Mitochondria/metabolism , Nitric Oxide Synthase Type III/metabolism , Nuclear Proteins/genetics , Sirtuin 1/metabolism , Acetylation , Animals , Endothelial Cells/metabolism , Endothelial Cells/pathology , Endothelium, Vascular/metabolism , Gene Knockout Techniques , Human Umbilical Vein Endothelial Cells , Humans , Hydrogen Peroxide/pharmacology , Membrane Potential, Mitochondrial , Mice , Oxidative Phosphorylation , Reactive Oxygen Species/metabolism
14.
J Cell Biol ; 216(1): 149-165, 2017 Jan 02.
Article in English | MEDLINE | ID: mdl-27986797

ABSTRACT

Reduced mitochondrial electron transport chain activity promotes longevity and improves energy homeostasis via cell-autonomous and -non-autonomous factors in multiple model systems. This mitohormetic effect is thought to involve the mitochondrial unfolded protein response (UPRmt), an adaptive stress-response pathway activated by mitochondrial proteotoxic stress. Using mice with skeletal muscle-specific deficiency of Crif1 (muscle-specific knockout [MKO]), an integral protein of the large mitoribosomal subunit (39S), we identified growth differentiation factor 15 (GDF15) as a UPRmt-associated cell-non-autonomous myomitokine that regulates systemic energy homeostasis. MKO mice were protected against obesity and sensitized to insulin, an effect associated with elevated GDF15 secretion after UPRmt activation. In ob/ob mice, administration of recombinant GDF15 decreased body weight and improved insulin sensitivity, which was attributed to elevated oxidative metabolism and lipid mobilization in the liver, muscle, and adipose tissue. Thus, GDF15 is a potent mitohormetic signal that safeguards against the onset of obesity and insulin resistance.


Subject(s)
Adipose Tissue/metabolism , Energy Metabolism , Growth Differentiation Factor 15/metabolism , Liver/drug effects , Muscle, Skeletal/metabolism , Obesity/metabolism , 3T3-L1 Cells , Adipose Tissue/drug effects , Animals , Cell Cycle Proteins/deficiency , Cell Cycle Proteins/genetics , Energy Metabolism/drug effects , Genetic Predisposition to Disease , Growth Differentiation Factor 15/deficiency , Growth Differentiation Factor 15/genetics , Growth Differentiation Factor 15/pharmacology , Homeostasis , Insulin Resistance , Leptin/deficiency , Leptin/genetics , Lipolysis , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Obese , Mitochondria, Liver/metabolism , Mitochondria, Muscle/metabolism , Muscle, Skeletal/drug effects , Obesity/genetics , Obesity/prevention & control , Oxidation-Reduction , Oxidative Phosphorylation , Phenotype , RNA Interference , Recombinant Proteins/pharmacology , Signal Transduction , Time Factors , Transcription Factor CHOP/genetics , Transcription Factor CHOP/metabolism , Transfection , Unfolded Protein Response , Weight Gain
15.
Korean J Physiol Pharmacol ; 20(5): 539-45, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27610041

ABSTRACT

Nafamostat mesilate (NM), a synthetic serine protease inhibitor, has anticoagulant and anti-inflammatory properties. The intracellular mediator and external anti-inflammatory external signal in the vascular wall have been reported to protect endothelial cells, in part due to nitric oxide (NO) production. This study was designed to examine whether NM exhibit endothelium dependent vascular relaxation through Akt/endothelial nitric oxide synthase (eNOS) activation and generation of NO. NM enhanced Akt/eNOS phosphorylation and NO production in a dose- and time-dependent manner in human umbilical vein endothelial cells (HUVECs) and aorta tissues obtained from rats treated with various concentrations of NM. NM concomitantly decreased arginase activity, which could increase the available arginine substrate for NO production. Moreover, we investigated whether NM increased NO bioavailability and decreased aortic relaxation response to an eNOS inhibitor in the aorta. These results suggest that NM increases NO generation via the Akt/eNOS signaling pathway, leading to endothelium-dependent vascular relaxation. Therefore, the vasorelaxing action of NM may contribute to the regulation of cardiovascular function.

16.
Free Radic Biol Med ; 94: 36-46, 2016 05.
Article in English | MEDLINE | ID: mdl-26898144

ABSTRACT

Mitochondrial NADP(+)-dependent isocitrate dehydrogenase (IDH2) plays an essential role protecting cells against oxidative stress-induced damage. A deficiency in IDH2 leads to mitochondrial dysfunction and the production of reactive oxygen species (ROS) in cardiomyocytes and cancer cells. However, the function of IDH2 in vascular endothelial cells is mostly unknown. In this study the effects of IDH2 deficiency on mitochondrial and vascular function were investigated in endothelial cells. IDH2 knockdown decreased the expression of mitochondrial oxidative phosphorylation (OXPHOS) complexes I, II and III, which lead to increased mitochondrial superoxide. In addition, the levels of fission and fusion proteins (Mfn-1, OPA-1, and Drp-1) were significantly altered and MnSOD expression also was decreased by IDH2 knockdown. Furthermore, knockdown of IDH2 decreased eNOS phosphorylation and nitric oxide (NO) concentration in endothelial cells. Interestingly, treatment with Mito-TEMPO, a mitochondrial-specific superoxide scavenger, recovered mitochondrial fission-fusion imbalance and blunted mitochondrial superoxide production, and reduced the IDH2 knockdown-induced decrease in MnSOD expression, eNOS phosphorylation and NO production in endothelial cells. Endothelium-dependent vasorelaxation was impaired, and the concentration of bioavailable NO decreased in the aortic ring in IDH2 knockout mice. These findings suggest that IDH2 deficiency induces endothelial dysfunction through the induction of dynamic mitochondrial changes and impairment in vascular function.


Subject(s)
Isocitrate Dehydrogenase/genetics , Nitric Oxide Synthase Type III/genetics , Oxidative Stress/genetics , Superoxide Dismutase/genetics , Animals , Endothelial Cells/metabolism , Endothelial Cells/pathology , Gene Expression Regulation , Humans , Isocitrate Dehydrogenase/metabolism , Mice , Mice, Knockout , Mitochondria/genetics , Mitochondria/pathology , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/metabolism , Organophosphorus Compounds/administration & dosage , Oxidation-Reduction , Oxidative Phosphorylation/drug effects , Piperidines/administration & dosage , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism , Superoxides/metabolism
17.
Integr Med Res ; 5(3): 223-229, 2016 Sep.
Article in English | MEDLINE | ID: mdl-28462122

ABSTRACT

BACKGROUND: Korean Red Ginseng (Panax ginseng) has been shown to exert antihypertensive effects. In particular, ginsenoside Rg3 is thought to be a potent modulator of vascular function. The present study was performed to examine the antihypertensive efficacy of Korean Red Ginseng (KRG) extract and Rg3-enriched KRG (REKRG) extract. METHODS: Spontaneously hypertensive rats (SHRs) and Wistar-Kyoto rats (WKYs) were divided into six groups (WKY control, WKY-KRG, WKY-REKRG, SHR control, SHR-KRG, and SHR-REKRG), and systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured at the carotid artery, followed by injection of 3 mg/kg KRG or 3 mg/kg REKRG. RESULTS: REKRG treatment significantly decreased SBP and DBP 3 hours post-treatment in the SHR group compared with SHR control group. However, SBP and DBP were not significantly different in KRG-treated SHRs compared with control SHRs. REKRG treatment did not significantly alter SBP or DBP 3 hours post-treatment in the WKY group compared with WKY control group. Similarly, there were no differences in SBP or DBP with KRG treatment in the WKY group and WKY control group. Both KRG and REKRG increased endothelial nitric oxide synthase phosphorylation levels in the aorta, and the increases in endothelial nitric oxide synthase phosphorylation levels by REKRG treatment were higher than those with KRG treatment. Similarly, nitric oxide production in plasma from WKYs and SHRs was also increased by both KRG and REKRG. CONCLUSION: These results suggest that REKRG has a more beneficial effect on blood pressure control than KRG in SHRs.

18.
Brain Res ; 1627: 12-20, 2015 Nov 19.
Article in English | MEDLINE | ID: mdl-26390938

ABSTRACT

Nafamostat mesilate (NM), a serine protease inhibitor, has a broad range of clinical applications that include use as an anticoagulant during hemodialysis in cerebral hemorrhage patients, as a hemoperfusion anticoagulant for patients with intravascular coagulation, hemorrhagic lesions, and hemorrhagic tendencies, and for the improvement of acute pancreatitis. However, the effects of NM on acute cerebral ischemia have yet to be investigated. Thus, the present study utilized a rat model in which transient middle cerebral artery occlusion (MCAO) was used to induce ischemic injury to investigate the effects of NM on infarct volume and histological and biological changes. NM (1mg/kg) was intravenously administered prior to and after the MCAO procedure. Compared to control rats, the administration of NM significantly decreased infarct size and the extent of brain edema after the induction of focal ischemia via MCAO. Additionally, NM treatment attenuated MCAO-induced neuronal degeneration and activation of microglia and astrocytes. NM treatment also inhibited the MCAO-induced expression levels of glucose-regulated protein 78 (GRP78), CATT/EBP homologous protein (CHOP), and p-eukaryotic initiation factor 2α (eIF2α), which are endoplasmic reticulum (ER) stress markers, in the cerebral cortex. The present findings demonstrate that NM exerts neuroprotective effects in the brain following focal ischemia via, at least in part, the inhibition of ER stress.


Subject(s)
Brain Injuries/drug therapy , Endoplasmic Reticulum Stress/drug effects , Guanidines/pharmacology , Guanidines/therapeutic use , Reperfusion , Analysis of Variance , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Astrocytes/metabolism , Astrocytes/pathology , Benzamidines , Brain Edema/drug therapy , Brain Injuries/etiology , Disease Models, Animal , Eukaryotic Initiation Factor-2/metabolism , Fluoresceins , Heat-Shock Proteins/metabolism , Infarction, Middle Cerebral Artery/complications , Male , Microglia/metabolism , Microglia/pathology , Neurologic Examination , Rats , Rats, Sprague-Dawley , Transcription Factor CHOP/metabolism
19.
Korean J Physiol Pharmacol ; 19(3): 229-34, 2015 May.
Article in English | MEDLINE | ID: mdl-25954127

ABSTRACT

Nafamostat mesilate (NM) is a serine protease inhibitor with anticoagulant and anti-inflammatory effects. NM has been used in Asia for anticoagulation during extracorporeal circulation in patients undergoing continuous renal replacement therapy and extra corporeal membrane oxygenation. Oxidative stress is an independent risk factor for atherosclerotic vascular disease and is associated with vascular endothelial function. We investigated whether NM could inhibit endothelial dysfunction induced by tumor necrosis factor-α (TNF-α). Human umbilical vein endothelial cells (HUVECs) were treated with TNF-α for 24 h. The effects of NM on monocyte adhesion, vascular cell adhesion molecule-1 (VCAM-1) and intracellular adhesion molecule-1 (ICAM-1) protein expression, p38 mitogen-activated protein kinase (MAPK) activation, and intracellular superoxide production were then examined. NM (0.01~100 µg/mL) did not affect HUVEC viability; however, it inhibited the increases in reactive oxygen species (ROS) production and p66shc expression elicited by TNF-α (3 ng/mL), and it dose dependently prevented the TNF-α-induced upregulation of endothelial VCAM-1 and ICAM-1. In addition, it mitigated TNF-α-induced p38 MAPK phosphorylation and the adhesion of U937 monocytes. These data suggest that NM mitigates TNF-α-induced monocyte adhesion and the expression of endothelial cell adhesion molecules, and that the anti-adhesive effect of NM is mediated through the inhibition of p66shc, ROS production, and p38 MAPK activation.

20.
J Ginseng Res ; 38(4): 244-50, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25379003

ABSTRACT

BACKGROUND: Panax ginseng has distinct and impressive health benefits, such as improved blood pressure and immune system functioning. Rg3-enriched Korean Red Ginseng (REKRG) isolated from Korean Red Ginseng contains a high percentage of Rg3. METHODS: In this study, we examined the effects of REKRG on endothelial cell nitric oxide synthase (eNOS) activation and adhesion molecules in endothelial cells and vascular function in rats. RESULTS: REKRG dose-dependently increased eNOS phosphorylation and nitric oxide (NO) production in endothelial cells. In addition, REKRG markedly inhibited the tumor necrosis factor-α (TNF-α)-mediated induction of intercellular adhesion molecule (ICAM)-1 and cyclooxygenase (COX)-2 expressions in endothelial cells. REKRG improved endothelium-dependent vasorelaxation in the Wistar-Kyoto (WKY) rat and spontaneously hypertensive rats (SHRs) compared with controls. Furthermore, REKRG treatment for 6 weeks increased serum NO levels and reduced the mean aortic intima-media thickness compared with controls. CONCLUSION: Taken together, these results suggest that REKRG increased vascular function and improved immune system functioning. Therefore, REKRG is a very useful food for preventing or improving various cardiovascular diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...