Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
Front Immunol ; 15: 1380063, 2024.
Article in English | MEDLINE | ID: mdl-38863704

ABSTRACT

Historically, the central nervous system (CNS) was regarded as 'immune-privileged', possessing its own distinct immune cell population. This immune privilege was thought to be established by a tight blood-brain barrier (BBB) and blood-cerebrospinal-fluid barrier (BCSFB), which prevented the crossing of peripheral immune cells and their secreted factors into the CNS parenchyma. However, recent studies have revealed the presence of peripheral immune cells in proximity to various brain-border niches such as the choroid plexus, cranial bone marrow (CBM), meninges, and perivascular spaces. Furthermore, emerging evidence suggests that peripheral immune cells may be able to infiltrate the brain through these sites and play significant roles in driving neuronal cell death and pathology progression in neurodegenerative disease. Thus, in this review, we explore how the brain-border immune niches may contribute to the pathogenesis of neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). We then discuss several emerging options for harnessing the neuroimmune potential of these niches to improve the prognosis and treatment of these debilitative disorders using novel insights from recent studies.


Subject(s)
Blood-Brain Barrier , Brain , Neurodegenerative Diseases , Humans , Neurodegenerative Diseases/immunology , Neurodegenerative Diseases/pathology , Animals , Blood-Brain Barrier/immunology , Brain/immunology , Brain/pathology , Immune Privilege
2.
Antioxidants (Basel) ; 13(5)2024 May 13.
Article in English | MEDLINE | ID: mdl-38790703

ABSTRACT

The etiology of hearing impairment is multifactorial, with contributions from both genetic and environmental factors. Although genetic studies have yielded valuable insights into the development and function of the auditory system, the contribution of gene products and their interaction with alternate environmental factors for the maintenance and development of auditory function requires further elaboration. In this review, we provide an overview of the current knowledge on the role of redox dysregulation as the converging factor between genetic and environmental factor-dependent development of hearing loss, with a focus on understanding the interaction of oxidative stress with the physical components of the peripheral auditory system in auditory disfunction. The potential involvement of molecular factors linked to auditory function in driving redox imbalance is an important promoter of the development of hearing loss over time.

3.
ACS Nano ; 18(17): 11284-11299, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38639114

ABSTRACT

The development of mRNA delivery systems utilizing lipid-based assemblies holds immense potential for precise control of gene expression and targeted therapeutic interventions. Despite advancements in lipid-based gene delivery systems, a critical knowledge gap remains in understanding how the biophysical characteristics of lipid assemblies and mRNA complexes influence these systems. Herein, we investigate the biophysical properties of cationic liposomes and their role in shaping mRNA lipoplexes by comparing various fabrication methods. Notably, an innovative fabrication technique called the liposome under cryo-assembly (LUCA) cycle, involving a precisely controlled freeze-thaw-vortex process, produces distinctive onion-like concentric multilamellar structures in cationic DOTAP/DOPE liposomes, in contrast to a conventional extrusion method that yields unilamellar liposomes. The inclusion of short-chain DHPC lipids further modulates the structure of cationic liposomes, transforming them from multilamellar to unilamellar structures during the LUCA cycle. Furthermore, the biophysical and biological evaluations of mRNA lipoplexes unveil that the optimal N/P charge ratio in the lipoplex can vary depending on the structure of initial cationic liposomes. Cryo-EM structural analysis demonstrates that multilamellar cationic liposomes induce two distinct interlamellar spacings in cationic lipoplexes, emphasizing the significant impact of the liposome structures on the final structure of mRNA lipoplexes. Taken together, our results provide an intriguing insight into the relationship between lipid assembly structures and the biophysical characteristics of the resulting lipoplexes. These relationships may open the door for advancing lipid-based mRNA delivery systems through more streamlined manufacturing processes.


Subject(s)
Fatty Acids, Monounsaturated , Lipids , Liposomes , Quaternary Ammonium Compounds , RNA, Messenger , Liposomes/chemistry , RNA, Messenger/chemistry , RNA, Messenger/genetics , Lipids/chemistry , Humans , Gene Transfer Techniques , Phosphatidylethanolamines/chemistry
4.
Gut Microbes ; 15(2): 2283911, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38010368

ABSTRACT

The complex symbiotic relationship between the mammalian body and gut microbiome plays a critical role in the health outcomes of offspring later in life. The gut microbiome modulates virtually all physiological functions through direct or indirect interactions to maintain physiological homeostasis. Previous studies indicate a link between maternal/early-life gut microbiome, brain development, and behavioral outcomes relating to social cognition. Here we present direct evidence of the role of the gut microbiome in brain development. Through magnetic resonance imaging (MRI), we investigated the impact of the gut microbiome on brain organization and structure using germ-free (GF) mice and conventionalized mice, with the gut microbiome reintroduced after weaning. We found broad changes in brain volume in GF mice that persist despite the reintroduction of gut microbes at weaning. These data suggest a direct link between the maternal gut or early-postnatal microbe and their impact on brain developmental programming.


Subject(s)
Gastrointestinal Microbiome , Mice , Animals , Gastrointestinal Microbiome/physiology , Brain , Head , Mammals
6.
Molecules ; 28(16)2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37630324

ABSTRACT

Metal oxides (MOs) having Mg and Al with Mg/Al ratios of 1, 2, 3, and 4 were synthesized via calcination of the layered double hydroxides (LDH). The X-ray diffraction analysis revealed that all the MO consisted of periclase (MgO) crystallite with comparable crystallinity regardless of the metal ratio. According to the 27Al magic-angle spinning nuclear magnetic resonance, the phase transformation from LDH to MO upon calcination facilitated the evolution of the Al3+ ions with unsaturated coordination at the surface of MO. The specific surface area values of MOs were not significantly different from each other, ranging between 100 and 200 m2/g, suggesting that the metal ratio did not strongly influence the porous structure of MO. The temperature-dependent desorption of ammonia demonstrated that the Lewis acidity of the Al-rich MOs was the largest with an Mg/Al ratio of 1, attributed to the efficient exposure of the surface-active site Al3+-O2- pairs. The acidity of heterogenous Al-rich MOs significantly increased with the exposed tetrahedral Al site on the surface and dramatically diminished when the molar ratio (Mg/Al) was over two.

7.
Mol Nutr Food Res ; 67(13): e2200756, 2023 07.
Article in English | MEDLINE | ID: mdl-37118978

ABSTRACT

SCOPE: Okara is a fiber-rich food by-product whereby biovalorization with Rhizopus oligosporus can improve its nutritional quality, generating fermentable substrates for improved gut health maintenance. This study evaluates the impact of okara- and biovalorized okara-containing biscuits consumption on gut health in Singapore adults. METHODS AND RESULTS: Participants consume control (C), 20% flour-substituted okara (AOK), and 20% flour-substituted biovalorized okara (RO) biscuits for three weeks, with assessment of gut metabolites, microbiome, and dietary intake. Fecal valeric acid is significantly higher with RO compared to AOK (p = 0.005). RO and AOK have significantly higher total serum short-chain fatty acids (p = 0.002 and 0.018 respectively) and acetic acid (p = 0.007 and 0.030 respectively) compared to C. Higher serum propionic acid (p = 0.004) and lower fecal lithocholic acid (p = 0.009) are observed with RO. Although serum zonulin shows no significant difference amongst interventions, AOK reduces Clostridiales while RO increases Bifidobacterium. CONCLUSION: Okara consumption improves serum SCFA regardless of fermentation while biovalorized okara further enhances gut metabolites by modulating gut microbiome.


Subject(s)
Gastrointestinal Microbiome , Adult , Humans , Bile Acids and Salts , Cross-Over Studies , Fatty Acids, Volatile/metabolism , Feces/microbiology , Dietary Fiber/analysis , Acetic Acid
8.
Theranostics ; 13(4): 1370-1380, 2023.
Article in English | MEDLINE | ID: mdl-36923526

ABSTRACT

Background: Tumor-initiating cells (TIC) often elude conventional cancer treatment, which results in metastasis and cancer relapse. Recently, studies have begun to focus on the TIC population in tumors to provide better therapeutic options. Previously, we have reported the successful development of a TIC-specific probe TiY with the binding target as vimentin. While a low concentration of TiY showed a TIC visualization, at a high concentration, TiY induced selective toxicity onto TIC in vitro. In this study, we aim to assess TiY's applicability in theranostics purposes, from in vivo visualization to therapeutic effect toward TIC, in cancer mouse models. Methods: We performed cell experiments with the TIC line model derived from resected primary non-small cell lung cancer (NSCLC) patient tumor. The animal model studies were conducted in mice of NSCLC patient-derived xenograft (PDX). TiY was intravenously delivered into the mice models at different concentrations to assess its in vivo TIC-selective staining and therapeutic effect. Results: We demonstrated the TIC-selective identification and therapeutic effect of TiY in animal models. TiY treatment induced a significant ablation of the TIC population in the tumor, and further molecular study elucidated that the mechanism of TiY is through vimentin dynamics in TIC. Conclusion: The results underscore the applicability of TiY for cancer treatment by selectively targeting soluble vimentin in TIC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Animals , Mice , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/pathology , Vimentin/metabolism , Precision Medicine , Cell Line, Tumor , Neoplasm Recurrence, Local/metabolism , Xenograft Model Antitumor Assays , Neoplastic Stem Cells/metabolism
9.
Front Neurosci ; 17: 1123967, 2023.
Article in English | MEDLINE | ID: mdl-36816113

ABSTRACT

The liver partakes as a sensor and effector of peripheral metabolic changes and a regulator of systemic blood and nutrient circulation. As such, abnormalities arising from liver dysfunction can influence the brain in multiple ways, owing to direct and indirect bilateral communication between the liver and the brain. Interestingly, altered bile acid composition resulting from perturbed liver cholesterol metabolism influences systemic inflammatory responses, blood-brain barrier permeability, and neuron synaptic functions. Furthermore, bile acids produced by specific bacterial species may provide a causal link between dysregulated gut flora and neurodegenerative disease pathology through the gut-brain axis. This review will cover the role of bile acids-an often-overlooked category of active metabolites-in the development of neurological disorders associated with neurodegeneration. Further studies into bile acid signaling in the brain may provide insights into novel treatments against neurological disorders.

10.
Front Mol Neurosci ; 15: 1062878, 2022.
Article in English | MEDLINE | ID: mdl-36466804

ABSTRACT

The expanded use of hypothesis-free gene analysis methods in autism research has significantly increased the number of genetic risk factors associated with the pathogenesis of autism. A further examination of the implicated genes directly revealed the involvement in processes pertinent to neuronal differentiation, development, and function, with a predominant contribution from the regulators of synaptic function. Despite the importance of presynaptic function in synaptic transmission, the regulation of neuronal network activity, and the final behavioral output, there is a relative lack of understanding of the presynaptic contribution to the pathology of autism. Here, we will review the close association among autism-related mutations, autism spectrum disorders (ASD) phenotypes, and the altered presynaptic protein functions through a systematic examination of the presynaptic risk genes relating to the critical stages of synaptogenesis and neurotransmission.

11.
Biomedicines ; 10(12)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36551821

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder, comprising 70% of dementia diagnoses worldwide and affecting 1 in 9 people over the age of 65. However, the majority of its treatments, which predominantly target the cholinergic system, remain insufficient at reversing pathology and act simply to slow the inevitable progression of the disease. The most recent neurotransmitter-targeting drug for AD was approved in 2003, strongly suggesting that targeting neurotransmitter systems alone is unlikely to be sufficient, and that research into alternate treatment avenues is urgently required. Neuromodulators are substances released by neurons which influence neurotransmitter release and signal transmission across synapses. Neuromodulators including neuropeptides, hormones, neurotrophins, ATP and metal ions display altered function in AD, which underlies aberrant neuronal activity and pathology. However, research into how the manipulation of neuromodulators may be useful in the treatment of AD is relatively understudied. Combining neuromodulator targeting with more novel methods of drug delivery, such as the use of multi-targeted directed ligands, combinatorial drugs and encapsulated nanoparticle delivery systems, may help to overcome limitations of conventional treatments. These include difficulty crossing the blood-brain-barrier and the exertion of effects on a single target only. This review aims to highlight the ways in which neuromodulator functions are altered in AD and investigate how future therapies targeting such substances, which act upstream to classical neurotransmitter systems, may be of potential therapeutic benefit in the sustained search for more effective treatments.

12.
Micromachines (Basel) ; 13(7)2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35888939

ABSTRACT

In this study, we fabricated a poly(dimethylsiloxane) (PDMS) surface coated with polydopamine (PDA) to enhance cell adhesion. PDA is well known for improving surface adhesion on various surfaces due to the abundant reactions enabled by the phenyl, amine, and catechol groups contained within it. To confirm the successful surface coating with PDA, the water contact angle and X-ray photoelectron spectroscopy were analyzed. Human umbilical vein endothelial cells (HUVECs) and human-bone-marrow-derived mesenchymal stem cells (MSCs) were cultured on the PDA-coated PDMS surface to evaluate potential improvements in cell adhesion and proliferation. HUVECs were also cultured inside a cylindrical PDMS microchannel, which was constructed to mimic a human blood vessel, and their growth and performance were compared to those of cells grown inside a rectangular microchannel. This study provides a helpful perspective for building a platform that mimics in vivo environments in a more realistic manner.

13.
Curr Opin Neurobiol ; 76: 102596, 2022 10.
Article in English | MEDLINE | ID: mdl-35803103

ABSTRACT

Sustained neurotransmission is driven by a continuous supply of synaptic vesicles to the release sites and modulated by synaptic vesicle dynamics. However, synaptic vesicle dynamics in synapses remain elusive because of technical limitations. Recent advances in fluorescence imaging techniques have enabled the tracking of single synaptic vesicles in small central synapses in living neurons. Single vesicle tracking has uncovered a wealth of new information about synaptic vesicle dynamics both within and outside presynaptic terminals, showing that single vesicle tracking is an effective tool for studying synaptic vesicle dynamics. Particularly, single vesicle tracking with high spatiotemporal resolution has revealed the dependence of synaptic vesicle dynamics on the location, stages of recycling, and neuronal activity. This review summarizes the recent findings from single synaptic vesicle tracking in small central synapses and their implications in synaptic transmission and pathogenic mechanisms of neurodegenerative diseases.


Subject(s)
Synapses , Synaptic Vesicles , Neurons/physiology , Presynaptic Terminals/physiology , Synapses/physiology , Synaptic Transmission/physiology , Synaptic Vesicles/physiology
14.
J Hazard Mater ; 435: 128980, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35523089

ABSTRACT

The ingestion and accumulation of microplastics is a serious threat to the health and survival of humans and other organisms given the increasing use of daily-use plastic products, especially during the COVID-19 pandemic. However, whether direct microplastic contamination from plastic packaging is a threat to human health remains unclear. We analyzed the market demand for plastic packaging in Asia-Pacific, North America, and Europe and identified the commonly used plastic food packaging products. We found that food containers exposed to high-temperature released more than 10 million microplastics per mL in water. Recycled plastic food packaging was demonstrated to continuously leach micro- and nanoplastics. In vitro cell engulfing experiments revealed that both micro- and nanoplastic leachates are readily taken up by murine macrophages without any preconditioning, and that short-term microplastic exposure may induce inflammation while exposure to nanoplastic substantially suppressed the lysosomal activities of macrophages. We demonstrated that the ingestion of micro- and nanoplastics released from food containers can exert differential negative effects on macrophage activities, proving that the explosive growth in the use of plastic packaging can poses significant health risks to consumers.


Subject(s)
COVID-19 , Water Pollutants, Chemical , Animals , Food Packaging , Humans , Lysosomes , Macrophages , Mice , Microplastics/toxicity , Pandemics , Plastics/analysis , Plastics/toxicity , Water Pollutants, Chemical/analysis
15.
J Cereb Blood Flow Metab ; 42(9): 1616-1631, 2022 09.
Article in English | MEDLINE | ID: mdl-35466772

ABSTRACT

Functional network activity alterations are one of the earliest hallmarks of Alzheimer's disease (AD), detected prior to amyloidosis and tauopathy. Better understanding the neuronal underpinnings of such network alterations could offer mechanistic insight into AD progression. Here, we examined a mouse model (3xTgAD mice) recapitulating this early AD stage. We found resting functional connectivity loss within ventral networks, including the entorhinal cortex, aligning with the spatial distribution of tauopathy reported in humans. Unexpectedly, in contrast to decreased connectivity at rest, 3xTgAD mice show enhanced fMRI signal within several projection areas following optogenetic activation of the entorhinal cortex. We corroborate this finding by demonstrating neuronal facilitation within ventral networks and synaptic hyperexcitability in projection targets. 3xTgAD mice, thus, reveal a dichotomic hypo-connected:resting versus hyper-responsive:active phenotype. This strong homotopy between the areas affected supports the translatability of this pathophysiological model to tau-related, early-AD deficits in humans.


Subject(s)
Alzheimer Disease , Tauopathies , Alzheimer Disease/metabolism , Animals , Disease Models, Animal , Entorhinal Cortex , Humans , Mice , Mice, Transgenic , Neurons/metabolism , Tauopathies/diagnostic imaging , Tauopathies/metabolism , tau Proteins/genetics , tau Proteins/metabolism
16.
Biomolecules ; 12(4)2022 03 27.
Article in English | MEDLINE | ID: mdl-35454096

ABSTRACT

α-synuclein (α-syn) is a presynaptic, lipid-binding protein strongly associated with the neuropathology observed in Parkinson's disease (PD), dementia with Lewy bodies (DLB), and Alzheimer's Disease (AD). In normal physiology, α-syn plays a pivotal role in facilitating endocytosis and exocytosis. Interestingly, mutations and modifications of precise α-syn domains interfere with α-syn oligomerization and nucleation that negatively affect presynaptic vesicular dynamics, protein expressions, and mitochondrial profiles. Furthermore, the integration of the α-syn oligomers into the presynaptic membrane results in pore formations, ion influx, and excitotoxicity. Targeted therapies against specific domains of α-syn, including the use of small organic molecules, monoclonal antibodies, and synthetic peptides, are being screened and developed. However, the prospect of an effective α-syn targeted therapy is still plagued by low permeability across the blood-brain barrier (BBB), and poor entry into the presynaptic axon terminals. The present review proposes a modification of current strategies, which includes the use of novel encapsulation technology, such as lipid nanoparticles, to bypass the BBB and deliver such agents into the brain.


Subject(s)
Parkinson Disease , alpha-Synuclein , Humans , Liposomes , Nanoparticles , Parkinson Disease/metabolism , Presynaptic Terminals/metabolism , alpha-Synuclein/metabolism
17.
Proc Natl Acad Sci U S A ; 119(11): e2113074119, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35254894

ABSTRACT

SignificanceWith obesity on the rise, there is a growing appreciation for intracellular lipid droplet (LD) regulation. Here, we show how saturated fatty acids (SFAs) reduce fat storage-inducing transmembrane protein 2 (FIT2)-facilitated, pancreatic ß cell LD biogenesis, which in turn induces ß cell dysfunction and death, leading to diabetes. This mechanism involves direct acylation of FIT2 cysteine residues, which then marks the FIT2 protein for endoplasmic reticulum (ER)-associated degradation. Loss of ß cell FIT2 and LDs reduces insulin secretion, increases intracellular ceramides, stimulates ER stress, and exacerbates diet-induced diabetes in mice. While palmitate and stearate degrade FIT2, unsaturated fatty acids such as palmitoleate and oleate do not, results of which extend to nutrition and diabetes.


Subject(s)
Diabetes Mellitus/etiology , Diabetes Mellitus/metabolism , Insulin-Secreting Cells/metabolism , Lipid Droplets/metabolism , Lipid Metabolism , Membrane Proteins/genetics , Animals , Cell Line , Endoplasmic Reticulum Stress , Fatty Acids/metabolism , Glucose/metabolism , Glucose Intolerance , Membrane Proteins/metabolism , Mice , Mutation , Palmitates/metabolism , Stearates/metabolism
18.
Cancers (Basel) ; 14(5)2022 Feb 26.
Article in English | MEDLINE | ID: mdl-35267526

ABSTRACT

Immune checkpoint inhibitors have shown great promise, emerging as a new pillar of treatment for cancer; however, only a relatively small proportion of recipients show a durable response to treatment. Strategies that reliably differentiate durably-responding tumours from non-responsive tumours are a critical unmet need. Persistent and durable immunological responses are associated with the generation of memory T cells. Effector memory T cells associated with tumour response to immune therapies are characterized by substantial upregulation of the potassium channel Kv1.3 after repeated antigen stimulation. We have developed a new Kv1.3 targeting radiopharmaceutical, [18F]AlF-NOTA-KCNA3P, and evaluated whether it can reliably differentiate tumours successfully responding to immune checkpoint inhibitor (ICI) therapy targeting PD-1 alone or combined with CLTA4. In a syngeneic colon cancer model, we compared tumour retention of [18F]AlF-NOTA-KCNA3P with changes in the tumour immune microenvironment determined by flow cytometry. Imaging with [18F]AlF-NOTA-KCNA3P reliably differentiated tumours responding to ICI therapy from non-responding tumours and was associated with substantial tumour infiltration of T cells, especially Kv1.3-expressing CD8+ effector memory T cells.

19.
Brain Pathol ; 32(5): e13064, 2022 09.
Article in English | MEDLINE | ID: mdl-35285112

ABSTRACT

Ermin is an actin-binding protein found almost exclusively in the central nervous system (CNS) as a component of myelin sheaths. Although Ermin has been predicted to play a role in the formation and stability of myelin sheaths, this has not been directly examined in vivo. Here, we show that Ermin is essential for myelin sheath integrity and normal saltatory conduction. Loss of Ermin in mice caused de-compacted and fragmented myelin sheaths and led to slower conduction along with progressive neurological deficits. RNA sequencing of the corpus callosum, the largest white matter structure in the CNS, pointed to inflammatory activation in aged Ermin-deficient mice, which was corroborated by increased levels of microgliosis and astrogliosis. The inflammatory milieu and myelin abnormalities were further associated with increased susceptibility to immune-mediated demyelination insult in Ermin knockout mice. Supporting a possible role of Ermin deficiency in inflammatory white matter disorders, a rare inactivating mutation in the ERMN gene was identified in multiple sclerosis patients. Our findings demonstrate a critical role for Ermin in maintaining myelin integrity. Given its near-exclusive expression in myelinating oligodendrocytes, Ermin deficiency represents a compelling "inside-out" model of inflammatory dysmyelination and may offer a new paradigm for the development of myelin stability-targeted therapies.


Subject(s)
Demyelinating Diseases , Multiple Sclerosis , Animals , Central Nervous System/metabolism , Demyelinating Diseases/genetics , Demyelinating Diseases/metabolism , Mice , Multiple Sclerosis/metabolism , Myelin Sheath/metabolism , Oligodendroglia/metabolism
20.
Biomedicines ; 10(2)2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35203552

ABSTRACT

Despite recent leaps in modern medicine, progress in the treatment of neurological diseases remains slow. The near impermeable blood-brain barrier (BBB) that prevents the entry of therapeutics into the brain, and the complexity of neurological processes, limits the specificity of potential therapeutics. Moreover, a lack of etiological understanding and the irreversible nature of neurological conditions have resulted in low tolerability and high failure rates towards existing small molecule-based treatments. Neuropeptides, which are small proteinaceous molecules produced by the body, either in the nervous system or the peripheral organs, modulate neurological function. Although peptide-based therapeutics originated from the treatment of metabolic diseases in the 1920s, the adoption and development of peptide drugs for neurological conditions are relatively recent. In this review, we examine the natural roles of neuropeptides in the modulation of neurological function and the development of neurological disorders. Furthermore, we highlight the potential of these proteinaceous molecules in filling gaps in current therapeutics.

SELECTION OF CITATIONS
SEARCH DETAIL
...