Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(4)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38396957

ABSTRACT

This study aimed to identify and evaluate drug candidates targeting the kinase inhibitory region of suppressor of cytokine signaling (SOCS) 3 for the treatment of allergic rhinitis (AR). Utilizing an artificial intelligence (AI)-based new drug development platform, virtual screening was conducted to identify compounds inhibiting the SH2 domain binding of SOCS3. Luminescence assays assessed the ability of these compounds to restore JAK-2 activity diminished by SOCS3. Jurkat T and BEAS-2B cells were utilized to investigate changes in SOCS3 and STAT3 expression, along with STAT3 phosphorylation in response to the identified compounds. In an OVA-induced allergic rhinitis mouse model, we measured serum levels of total IgE and OVA-specific IgE, performed real-time PCR on nasal mucosa samples to quantify Th2 cytokines and IFN-γ expression, and conducted immunohistochemistry to analyze eosinophil levels. Screening identified 20 hit compounds with robust binding affinities. As the concentration of SOCS3 increased, a corresponding decrease in JAK2 activity was observed. Compounds 5 and 8 exhibited significant efficacy in restoring JAK2 activity without toxicity. Treatment with these compounds resulted in reduced SOCS3 expression and the reinstatement of STAT3 phosphorylation in Jurkat T and BEAS-2B cells. In the OVA-induced allergic rhinitis mouse model, compounds 5 and 8 effectively alleviated nasal symptoms and demonstrated lower levels of immune markers compared to the allergy group. This study underscores the promising nonclinical efficacy of compounds identified through the AI-based drug development platform. These findings introduce innovative strategies for the treatment of AR and highlight the potential therapeutic value of targeting SOCS3 in managing AR.


Subject(s)
Artificial Intelligence , Rhinitis, Allergic , Mice , Animals , Ovalbumin , Nasal Mucosa/metabolism , Cytokines/metabolism , Suppressor of Cytokine Signaling Proteins/metabolism , Immunoglobulin E/metabolism , Mice, Inbred BALB C , Disease Models, Animal
2.
Biomedicines ; 10(12)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36552002

ABSTRACT

Several multiplex nucleic acid assay platforms have been developed in response to the increasing importance of nucleic acid analysis, but these assays should be optimized as per the requirements of point-of-care for clinical diagnosis. To achieve rapid and accurate detection, involving a simple procedure, we propose a new concept in the field of nucleic acid multiplex assay platforms using hydrogel microparticles, called barcode receptor-encoded particles (BREPs). The BREP assay detects multiple targets in a single reaction with a single fluorophore by analyzing graphically encoded hydrogel particles. By introducing sets of artificially synthesized barcode receptor and barcode probes, the BREP assay is easily applicable in multiplexing any genetic target; sets of barcode receptors and barcode probes should be designed delicately for universal application. The performance of the BREP assay was successfully verified in a multiplex assay for the identification of different malaria species with high sensitivity, wide dynamic range, fast detection time, and multiplexibility.

3.
Biomedicines ; 10(11)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36359214

ABSTRACT

Accumulating evidence has shown that sirtuin 7 (SIRT7), a mediator of various cellular activities, plays an important role in the pathogenesis of various immune-mediated inflammatory disorders. However, information remains limited regarding the role of SIRT7 in intestinal inflammation. We used a murine colitis model to investigate the role of SIRT7 in intestinal immunity and whether SIRT7 inhibitors could attenuate the intestinal inflammatory response. Mice were divided into three groups: control, colitis-induced, and SIRT7-inhibitor-treated. A colitis mouse model was established by intraperitoneal injection and nasal challenge with ovalbumin, as in our previous study. Quantitative analyses of inflammatory cytokines and SIRT7 levels in the colonic mucosa were performed to compare the changes in inflammatory responses between the three groups. The colitis group showed increased levels of inflammatory cytokines and SIRT7 in the colonic mucosa. The inflammatory reaction was suppressed in colitis-induced mice administered the SIRT7 inhibitor. The qRT-PCR results showed normalization of inflammatory cytokines in the SIRT7 inhibitor-treated group. Histologic study revealed a decrease in the extent of inflammation after SIRT7 treatment. We also observed that the degree of clinical inflammation was improved in SIRT7-treated mice. Our study demonstrated that SIRT7 inhibition attenuated the inflammatory response in the colon of mice, suggesting a possible role for SIRT7 in the pathogenesis of immune-mediated intestinal inflammation.

SELECTION OF CITATIONS
SEARCH DETAIL
...