Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 13376, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38862572

ABSTRACT

In individuals with hearing loss, protection of residual hearing is essential following cochlear implantation to facilitate acoustic and electric hearing. Hearing preservation requires slow insertion, atraumatic electrode and delivery of the optimal quantity of a pharmacological agent. Several studies have reported variable hearing outcomes with osmotic pump-mediated steroid delivery. New drugs, such as sialyllactose (SL) which have anti-inflammatory effect in many body parts, can prevent tissue overgrowth. In the present study, the positive effects of the pharmacological agent SL against insults were evaluated in vitro using HEI-OC1 cells. An animal model to simulate the damage due to electrode insertion during cochlear implantation was used. SL was delivered using osmotic pumps to prevent loss of the residual hearing in this animal model. Hearing deterioration, tissue fibrosis and ossification were confirmed in this animal model. Increased gene expressions of inflammatory cytokines were identified in the cochleae following dummy electrode insertion. Following the administration of SL, insertion led to a decrease in hearing threshold shifts, tissue reactions, and inflammatory markers. These results emphasize the possible role of SL in hearing preservation and improve our understanding of the mechanism underlying hearing loss after cochlear implantation.


Subject(s)
Cochlear Implantation , Hearing Loss , Lactose , Animals , Lactose/analogs & derivatives , Lactose/pharmacology , Hearing Loss/prevention & control , Hearing Loss/drug therapy , Hearing/drug effects , Cochlea/drug effects , Cochlea/metabolism , Mice , Disease Models, Animal , Cell Line , Cytokines/metabolism , Male , Sialic Acids
2.
Cell Death Dis ; 11(5): 375, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32415082

ABSTRACT

Age-dependent decrease of mitochondrial energy production and cellular redox imbalance play significant roles in age-related hearing loss (ARHL). Lactate dehydrogenase B (LDHB) is a key glycolytic enzyme that catalyzes the interconversion of pyruvate and lactate. LDH activity and isoenzyme patterns are known to be changed with aging, but the role of LDHB in ARHL has not been studied yet. Here, we found that LDHB knockout mice showed hearing loss at high frequencies, which is the typical feature of ARHL. LDHB knockdown caused downregulation of mitochondrial functions in auditory cell line, University of Bristol/organ of Corti 1 (UB/OC1) with decreased NAD+ and increased hypoxia inducing factor-1α. LDHB knockdown also enhanced the death of UB/OC1 cells with ototoxic gentamicin treatment. On the contrary, the induction of LDHB expression caused enhanced mitochondrial functions, including changes in mitochondrial respiratory subunits, mitochondrial membrane potentials, ATP, and the NAD+/NADH ratio. Thus, we concluded that suppression of LDHB activity may be closely related with the early onset or progression of ARHL.


Subject(s)
Age Factors , Glycolysis/physiology , Hearing Loss/metabolism , Isoenzymes/metabolism , L-Lactate Dehydrogenase/metabolism , Animals , Cell Line, Tumor , Hearing Loss/physiopathology , Lactic Acid/metabolism , Mice , Mitochondria/metabolism , Pyruvic Acid/metabolism
3.
J Korean Med Sci ; 35(13): e81, 2020 Apr 06.
Article in English | MEDLINE | ID: mdl-32242342

ABSTRACT

BACKGROUND: This study was performed to identify acute tinnitus and evaluate the efficacy of steroids for noise-induced acute tinnitus by measuring the gap-prepulse inhibition of the acoustic startle (GPIAS) value in an animal model. METHODS: Nineteen rats (the noise group [n = 7] and the noise + dexamethasone [DEX] group [n = 12]) were exposed to narrow-band noise centered at 16 kHz from a sound generator for 4 hours. The noise + DEX group received intraperitoneal steroid administration daily for 5 days (1.5 mg/kg/day) after completing noise exposure. Auditory brainstem response and GPIAS value were measured just prior to, and 1 day after noise exposure and on days 1 and 10 days after completing steroid administration. The changes in cochlear structure were evaluated by histological analysis. RESULTS: The threshold shift was checked 1 and 10 days after intraperitoneal steroid injection, and no differences in threshold shift were observed between the two groups in each frequency except for 32 kHz 1 day after steroid injection. The mean GPIAS value in the noise + DEX group (36.4% ± 14.1%) was significantly higher than that in the noise group (16.4% ± 18.8%) 10 days after intraperitoneal steroid administration (P = 0.017). There were no pathological changes associated with noise trauma in the two groups as determined on hematoxylin and eosin and immunohistochemical staining. CONCLUSION: An acute tinnitus model with minimal structural changes by noise exposure was set up, and used to verify tinnitus objectively by measuring the GPIAS value. Steroid therapy for control of tinnitus was validated in this animal model.


Subject(s)
Dexamethasone , Disease Models, Animal , Glucocorticoids , Noise , Tinnitus , Acoustics , Acute Disease , Animals , Dexamethasone/therapeutic use , Evoked Potentials, Auditory, Brain Stem , Glucocorticoids/therapeutic use , Male , Noise/adverse effects , Rats , Tinnitus/diagnosis , Tinnitus/drug therapy , Tinnitus/etiology
4.
Cell Prolif ; 52(2): e12545, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30430685

ABSTRACT

OBJECT: The purpose of this study was to explore whether melatonin could protect mesenchymal stem cells (MSCs) against ischaemic injury, by inhibiting endoplasmic reticulum (ER) stress and autophagy both in vivo and in vitro. MATERIALS AND METHODS: To confirm the protective effect of melatonin against ER stress in MSCs, markers of cell viability, apoptosis and autophagy were analysed. To further investigate the regenerative effect of melatonin-treated MSCs in ischaemic tissues, a murine hindlimb ischaemic model was established. RESULTS: Under oxidative stress conditions, treatment with melatonin suppressed the activation of ER stress-associated proteins and autophagy-associated proteins acting through upregulation of cellular prion protein (PrPC ) expression. Consequently, inhibition of apoptotic cell death occurred. Melatonin also promoted the activation of MnSOD and catalase activities in MSCs. In a murine hindlimb ischaemia model, melatonin-treated MSCs also enhanced the functional limb recovery as well as neovascularization. These beneficial effects of melatonin were all blocked by knock-down of PrPC expression. CONCLUSION: Melatonin protects against ER stress/autophagy-induced apoptotic cell death by augmenting PrPC expression. Thus, melatonin-treated MSCs could be a potential cell-based therapeutic agent for ER stress-induced ischaemic diseases, and melatonin-induced PrPC might be a key molecule in ameliorating ER stress and autophagy.


Subject(s)
Antioxidants/therapeutic use , Autophagy/drug effects , Endoplasmic Reticulum Stress/drug effects , Ischemia/drug therapy , Melatonin/therapeutic use , Mesenchymal Stem Cells/drug effects , Prion Proteins/metabolism , Animals , Antioxidants/pharmacology , Cells, Cultured , Hindlimb/blood supply , Hindlimb/drug effects , Hindlimb/metabolism , Hindlimb/pathology , Ischemia/metabolism , Ischemia/pathology , Male , Melatonin/pharmacology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/pathology , Mice, Inbred BALB C , Mice, Nude , Oxidative Stress/drug effects , Prion Proteins/analysis
5.
J Pineal Res ; 66(1): e12535, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30372554

ABSTRACT

Although mesenchymal stem cell (MSC)-based therapy is a treatment strategy for ischemic diseases associated with chronic kidney disease (CKD), MSCs of CKD patients undergo accelerated senescence, with decreased viability and proliferation upon uremic toxin exposure, inhibiting their utility as a potent stem cell source for transplantation therapy. We investigated the effects of melatonin administration in protecting against cell senescence and decreased viability induced by pathophysiological conditions near the engraftment site. MSCs harvested from CKD mouse models were treated with H2 O2 to induce oxidative stress. CKD-derived MSCs exhibited greater oxidative stress-induced senescence than normal-mMSCs, while melatonin protected CKD-mMSCs from H2 O2 and associated excessive senescence. The latter was mediated by PrPC -dependent mitochondrial functional enhancement; melatonin upregulated PrPC , which bound PINK1, thus promoting mitochondrial dynamics and metabolism. In vivo, melatonin-treated CKD-mMSCs survived longer, with increased secretion of angiogenic cytokines in ischemic disease engraftment sites. CKD-mMSCs are more susceptible to H2 O2 -induced senescence than normal-mMSCs, and melatonin administration protects CKD-mMSCs from excessive senescence by upregulating PrPC and enhancing mitochondrial function. Melatonin showed favorable therapeutic effects by successfully protecting CKD-mMSCs from related ischemic conditions, thereby enhancing angiogenesis and survival. These results elucidate the mechanism underlying senescence inhibition by melatonin in stem cell-based therapies using mouse-derived CKD-mMSCs.


Subject(s)
Cellular Senescence/drug effects , Melatonin/therapeutic use , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Renal Insufficiency, Chronic/drug therapy , Animals , Blotting, Western , Cell Line, Tumor , Cell Survival/drug effects , Humans , Immunohistochemistry , Male , Mice , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Signal Transduction/drug effects , Urinary Bladder Neoplasms/drug therapy , Wound Healing/drug effects
6.
Int J Mol Sci ; 19(2)2018 Jan 25.
Article in English | MEDLINE | ID: mdl-29370069

ABSTRACT

Mesenchymal stem cells (MSCs) could be a promising solution in the treatment of various diseases including chronic kidney disease (CKD). However, endoplasmic reticulum (ER) stress induced by ischemia in the area of application limits the integration and survival of MSCs in patients. In our study, we generated ER stress-induced conditions in MSCs using P-cresol. As P-cresol is a toxic compound accumulated in the body of CKD patients and induces apoptosis and inflammation through reactive oxygen species (ROS), we observed ER stress-induced MSC apoptosis activated by oxidative stress, which in turn resulted from ROS generation. To overcome stress-induced apoptosis, we investigated the protective effects of tauroursodeoxycholic acid (TUDCA), a bile acid, on ER stress in MSCs. In ER stress, TUDCA treatment of MSCs reduced ER stress-associated protein activation, including GRP78, PERK, eIF2α, ATF4, IRE1α, and CHOP. Next, to explore the protective mechanism adopted by TUDCA, TUDCA-mediated cellular prion protein (PrPC) activation was assessed. We confirmed that PrPC expression significantly increased ROS, which was eliminated by superoxide dismutase and catalase in MSCs. These findings suggest that TUDCA protects from inflammation and apoptosis in ER stress via PrPC expression. Our study demonstrates that TUDCA protects MSCs against inflammation and apoptosis in ER stress by PrPC expression in response to P-cresol exposure.


Subject(s)
Antioxidants/pharmacology , Mesenchymal Stem Cells/metabolism , PrPC Proteins/metabolism , Reactive Oxygen Species/metabolism , Taurochenodeoxycholic Acid/pharmacology , Adipose Tissue/cytology , Apoptosis , Cells, Cultured , Cresols/toxicity , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Humans , Mesenchymal Stem Cells/drug effects , Oxidative Stress , PrPC Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...