Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 4535, 2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33633206

ABSTRACT

To investigate the effects of their surface recovery and optical properties, extremely small sized (12 µm × 12 µm mesa area) red AlGaInP micro light emitting diodes ([Formula: see text] LED) were fabricated using a diluted hydrofluoric acid (HF) surface etch treatment. After the chemical treatment, the external quantum efficiencies (EQEs) of [Formula: see text]-LED at low and high injection current regions have been improved by 35.48% and 12.86%, respectively. The different phenomena of EQEs have a complex relationship between the suppression of non-radiative recombination originating from the etching damage of the surface and the improvement of light extraction of the sidewalls. The constant enhancement of EQE at a high injection current it is attributed to the expansion of the active region's sidewall surface area by the selective etching of AlInP layers. The improved EQE at a low injection current is related to the minimization of the surface recombination caused by plasma damage from the surface. High-resolution transmission electron microscopy (HR-TEM) revealed physical defects on the sidewall surface, such as plasma-induced lattice disorder and impurity contamination damage, were eliminated using chemical treatment. This study suggests that chemical surface treatment using diluted HF acid can be an effective method for enhancing the [Formula: see text]-LED performance.

2.
Opt Express ; 22 Suppl 3: A790-9, 2014 May 05.
Article in English | MEDLINE | ID: mdl-24922386

ABSTRACT

Efficiency droop is a major obstacle facing high-power application of InGaN/GaN quantum-well (QW) light-emitting diodes (LEDs). In this paper, we report the suppression of efficiency droop induced by the process of density-activated defect recombination in nanorod structures of a-plane InGaN/GaN QWs. In the high carrier density regime, the retained emission efficiency in a dry-etched nanorod sample is observed to be over two times higher than that in its parent QW sample. We further argue that such improvement is a net effect that the lateral carrier confinement overcomes the increased surface trapping introduced during fabrication.

SELECTION OF CITATIONS
SEARCH DETAIL
...