Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37112339

ABSTRACT

This paper presents a novel approach to creating a graphical summary of a subject's activity during a protocol in a Semi Free-Living Environment. Thanks to this new visualization, human behavior, in particular locomotion, can now be condensed into an easy-to-read and user-friendly output. As time series collected while monitoring patients in Semi Free-Living Environments are often long and complex, our contribution relies on an innovative pipeline of signal processing methods and machine learning algorithms. Once learned, the graphical representation is able to sum up all activities present in the data and can quickly be applied to newly acquired time series. In a nutshell, raw data from inertial measurement units are first segmented into homogeneous regimes with an adaptive change-point detection procedure, then each segment is automatically labeled. Then, features are extracted from each regime, and lastly, a score is computed using these features. The final visual summary is constructed from the scores of the activities and their comparisons to healthy models. This graphical output is a detailed, adaptive, and structured visualization that helps better understand the salient events in a complex gait protocol.


Subject(s)
Gait Analysis , Wearable Electronic Devices , Humans , Gait , Locomotion , Machine Learning , Algorithms
2.
Front Neurol ; 13: 1042667, 2022.
Article in English | MEDLINE | ID: mdl-36438953

ABSTRACT

Introduction: The aim of this study was to realize a systematic review of the different ways, both clinical and instrumental, used to evaluate the effects of the surgical correction of an equinovarus foot (EVF) deformity in post-stroke patients. Methods: A systematic search of full-length articles published from 1965 to June 2021 was performed in PubMed, Embase, CINAHL, Cochrane, and CIRRIE. The identified studies were analyzed to determine and to evaluate the outcomes, the clinical criteria, and the ways used to analyze the impact of surgery on gait pattern, instrumental, or not. Results: A total of 33 studies were included. The lack of methodological quality of the studies and their heterogeneity did not allow for a valid meta-analysis. In all, 17 of the 33 studies involved exclusively stroke patients. Ten of the 33 studies (30%) evaluated only neurotomies, one study (3%) evaluated only tendon lengthening procedures, 19 studies (58%) evaluated tendon transfer procedures, and only two studies (6%) evaluated the combination of tendon and neurological procedures. Instrumental gait analysis was performed in only 11 studies (33%), and only six studies (18%) combined it with clinical and functional analyses. Clinical results show that surgical procedures are safe and effective. A wide variety of different scales have been used, most of which have already been validated in other indications. Discussion: Neuro-orthopedic surgery for post-stroke EVF is becoming better defined. However, the method of outcome assessment is not yet well established. The complexity in the evaluation of the gait of patients with EVF, and therefore the analysis of the effectiveness of the surgical management performed, requires the integration of a patient-centered functional dimension, and a reliable and reproducible quantified gait analysis, which is routinely usable clinically if possible.

3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 2020-2024, 2021 11.
Article in English | MEDLINE | ID: mdl-34891684

ABSTRACT

This paper presents an innovative method to analyze inertial signals recorded in a semi-controlled environment. It uses an adaptive and supervised change point detection procedure to decompose the signals into homogeneous segments, allowing a refined analysis of the successive phases within a gait protocol. Thanks to a training procedure, the algorithm can be applied to a wide range of protocols and handles different levels of granularity. The method is tested on a cohort of 15 healthy subjects performing a complex protocol composed of different activities and shows promising results for the automated and adaptive study of human gait and activity.Clinical relevance- A new approach to study human activity and locomotion in Free-Living Environments FLEs through an adaptive change-point detection which isolates homogeneous phases.


Subject(s)
Gait , Locomotion , Algorithms , Healthy Volunteers , Humans
4.
Sensors (Basel) ; 20(19)2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33019633

ABSTRACT

This article presents an overview of fifty-eight articles dedicated to the evaluation of physical activity in free-living conditions using wearable motion sensors. This review provides a comprehensive summary of the technical aspects linked to sensors (types, number, body positions, and technical characteristics) as well as a deep discussion on the protocols implemented in free-living conditions (environment, duration, instructions, activities, and annotation). Finally, it presents a description and a comparison of the main algorithms and processing tools used for assessing physical activity from raw signals.


Subject(s)
Algorithms , Exercise , Movement , Wearable Electronic Devices , Humans , Posture
SELECTION OF CITATIONS
SEARCH DETAIL
...