Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cells ; 29(11): 1696-704, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21898697

ABSTRACT

Induced pluripotent stem cells (iPSCs) have revolutionized the stem cell field. iPSCs are most often produced by using retroviruses. However, the resulting cells may be ill-suited for clinical applications. Many alternative strategies to make iPSCs have been developed, but the nonintegrating strategies tend to be inefficient, while the integrating strategies involve random integration. Here, we report a facile strategy to create murine iPSCs that uses plasmid DNA and single transfection with sequence-specific recombinases. PhiC31 integrase was used to insert the reprogramming cassette into the genome, producing iPSCs. Cre recombinase was then used for excision of the reprogramming genes. The iPSCs were demonstrated to be pluripotent by in vitro and in vivo criteria, both before and after excision of the reprogramming cassette. This strategy is comparable with retroviral approaches in efficiency, but is nonhazardous for the user, simple to perform, and results in nonrandom integration of a reprogramming cassette that can be readily deleted. We demonstrated the efficiency of this reprogramming and excision strategy in two accessible cell types, fibroblasts and adipose stem cells. This simple strategy produces pluripotent stem cells that have the potential to be used in a clinical setting.


Subject(s)
DNA Nucleotidyltransferases/metabolism , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Plasmids/genetics , Adipose Tissue/cytology , Animals , Blotting, Southern , Cells, Cultured , Cellular Reprogramming/genetics , Cellular Reprogramming/physiology , DNA Nucleotidyltransferases/genetics , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice , Polymerase Chain Reaction
2.
PLoS One ; 5(6): e11367, 2010 Jun 29.
Article in English | MEDLINE | ID: mdl-20614008

ABSTRACT

BACKGROUND: Hydrodynamic injection is an effective method for DNA delivery in mouse liver and is being translated to larger animals for possible clinical use. Similarly, phiC31 integrase has proven effective in mediating long-term gene therapy in mice when delivered by hydrodynamic injection and is being considered for clinical gene therapy applications. However, chromosomal aberrations have been associated with phiC31 integrase expression in tissue culture, leading to questions about safety. METHODOLOGY/PRINCIPAL FINDINGS: To study whether hydrodynamic delivery alone, or in conjunction with delivery of phiC31 integrase for long-term transgene expression, could facilitate tumor formation, we used a transgenic mouse model in which sustained induction of the human C-MYC oncogene in the liver was followed by hydrodynamic injection. Without injection, mice had a median tumor latency of 154 days. With hydrodynamic injection of saline alone, the median tumor latency was significantly reduced, to 105 days. The median tumor latency was similar, 106 days, when a luciferase donor plasmid and backbone plasmid without integrase were administered. In contrast, when active or inactive phiC31 integrase and donor plasmid were supplied to the mouse liver, the median tumor latency was 153 days, similar to mice receiving no injection. CONCLUSIONS/SIGNIFICANCE: Our data suggest that phiC31 integrase does not facilitate tumor formation in this C-MYC transgenic mouse model. However, in groups lacking phiC31 integrase, hydrodynamic injection appeared to contribute to C-MYC-induced hepatocellular carcinoma in adult mice. Although it remains to be seen to what extent these findings may be extrapolated to catheter-mediated hydrodynamic delivery in larger species, they suggest that caution should be used during translation of hydrodynamic injection to clinical applications.


Subject(s)
Carcinoma, Hepatocellular/pathology , Genes, myc , Integrases/metabolism , Liver Neoplasms, Experimental/pathology , Animals , Base Sequence , Carcinoma, Hepatocellular/enzymology , DNA Primers , Female , Liver Neoplasms, Experimental/enzymology , Male , Mice , Mice, Transgenic
3.
Circ Res ; 97(12): 1342-50, 2005 Dec 09.
Article in English | MEDLINE | ID: mdl-16293790

ABSTRACT

Previous studies have demonstrated a role for voltage-gated K+ (Kv) channel alpha subunits of the Kv4 subfamily in the generation of rapidly inactivating/recovering cardiac transient outward K+ current, I(to,f), channels. Biochemical studies suggest that mouse ventricular I(to,f) channels reflect the heteromeric assembly of Kv4.2 and Kv4.3 with the accessory subunits, KChIP2 and Kvbeta1, and that Kv4.2 is the primary determinant of regional differences in (mouse ventricular) I(to,f) densities. Interestingly, the phenotypic consequences of manipulating I(to,f) expression in different mouse models are distinct. In the experiments here, the effects of the targeted deletion of Kv4.2 (Kv4.2(-/-)) were examined. Unexpectedly, voltage-clamp recordings from Kv4.2(-/-) ventricular myocytes revealed that I(to,f) is eliminated. In addition, the slow transient outward K+ current, I(to,s), and the Kv1.4 protein (which encodes I(to,s)) are upregulated in Kv4.2(-/-) ventricles. Although Kv4.3 mRNA/protein expression is not measurably affected, KChIP2 expression is markedly reduced in Kv4.2(-/-) ventricles. Similar to Kv4.3, expression of Kvbeta1, as well as Kv1.5 and Kv2.1, is similar in wild-type and Kv4.2(-/-) ventricles. In addition, and in marked contrast to previous findings in mice expressing a truncated Kv4.2 transgene, the elimination I(to,f) in Kv4.2(-/-) mice does not result in ventricular hypertrophy. Taken together, these findings demonstrate not only an essential role for Kv4.2 in the generation of mouse ventricular I(to,f) channels but also that the loss of I(to,f) per se does not have overt pathophysiological consequences.


Subject(s)
Cardiomegaly/etiology , Heart Ventricles/pathology , Myocytes, Cardiac/physiology , Shal Potassium Channels/physiology , Ventricular Remodeling , Animals , Electrocardiography , Kv Channel-Interacting Proteins/physiology , Mice , Mice, Knockout , Shal Potassium Channels/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...