Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Gels ; 10(6)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38920946

ABSTRACT

This review explores the recent progress on carbon xerogels (CXs) and highlights their development and use as efficient electrodes in organic electric double-layer capacitors (EDLCs). In addition, this work examines how the adjustment of synthesis parameters, such as pH, polymerization duration, and the reactant-to-catalyst ratio, crucially affects the structure and electrochemical properties of xerogels. The adaptability of xerogels in terms of modification of their porosity and structure plays a vital role in the improvement of EDLC applications as it directly influences the interaction between electrolyte ions and the electrode surface, which is a key factor in determining EDLC performance. The review further discusses the substantial effects of chemical activation with KOH on the improvement of the porous structure and specific surface area, which leads to notable electrochemical enhancements. This structural control facilitates improvement in ion transport and storage, which are essential for efficient EDLC charge-discharge (C-D) cycles. Compared with commercial activated carbons for EDLC electrodes, CXs attract interest for their superior surface area, lower electrical resistance, and stable performance across diverse C-D rates, which underscore their promising potential in EDLC applications. This in-depth review not only summarizes the advancements in CX research but also highlights their potential to expand and improve EDLC applications and demonstrate the critical role of their tunable porosity and structure in the evolution of next-generation energy storage systems.

2.
Front Bioeng Biotechnol ; 10: 837838, 2022.
Article in English | MEDLINE | ID: mdl-35340840

ABSTRACT

The rapid detection of viruses is becoming increasingly important to prevent widespread infections. However, virus detection via reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is time-consuming, as it involves independent nucleic acid extraction and complementary DNA synthesis. This process limits the potential for rapid diagnosis and mass analysis, which are necessary to curtail viral spread. In this study, a simple and rapid thermolysis method was developed to circumvent the need for extraction and purification of viral RNA. The developed protocol was applied to one-chip digital PCR (OCdPCR), which allowed thermolysis, RT, and digital PCR in a single unit comprising 20,000 chambers of sub-nanoliter volume. Two viruses such as tobacco mosaic virus and cucumber mosaic virus were tested as model viral particles. First, the temperature, exposure time, and template concentration were optimized against tobacco mosaic viral particles, and the most efficient conditions were identified as 85°C, 5 min, and 0.01 µg/nL with a cycle threshold of approximately 33. Finally, the OCdPCR analysis yielded 1,130.2 copies/µL using 10-2 µg/nL of viral particles in a 30 min thermolysis-RT reaction at 70°C. This novel protocol shows promise as a quick, accurate, and precise method for large-scale viral analysis in the future.

3.
Biosens Bioelectron ; 195: 113650, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34560350

ABSTRACT

Accurate assessment of dietary macronutrients intake is critical for the effective management of multiple diseases, such as obesity, diabetes, cardiovascular disease, metabolic disease, and cancer. Conventional self-reporting method is burdensome, inaccurate, and often biased. Though blood analysis and breath analysis can provide evidence-based information, they are either invasive or subject to human errors. Here we reported a wearable transdermal volatile biomarkers detection system based on novel colorimetric sensing technology for dietary macronutrients intake assessment. This technique quantifies the emission rates of transdermal volatile biomarkers via a gradient-based colorimetric array sensor (GCAS). The optical system of the GCAS device tracks the localized color development associated with the chemical reaction between the volatile biomarkers and the porous sensing probes, and determines the biomarkers emission rates through image processing algorithms. The localized chemical reaction and the image-based signal processing also make the GCAS capable for multiplexed detection of multiple analytes simultaneously. The GCAS sensor has been applied for transdermal acetone detection on 5 subjects in a keto diet intervention. The study indicates that the transdermal acetone increases after the subjects consuming keto diets and it decreases to basal level after intaking carb-rich diets. The transdermal acetone response from the GCAS sensor correlates well with breath acetone concentration in the range between 0 and 40 ppm and the correlation factor (R2) is as high as 0.8877. This method provides a noninvasive, low-cost, and wearable tool for assessing dietary macronutrients intake outside of lab or hospital settings. It could be widely applied in disease management, weight control, and nutrition management.


Subject(s)
Biosensing Techniques , Colorimetry , Acetone , Biomarkers , Breath Tests , Humans
4.
ACS Nano ; 15(9): 14207-14217, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34170113

ABSTRACT

Continuous monitoring of hydrogen sulfide (H2S) in human breath for early stage diagnosis of halitosis is of great significance for prevention of dental diseases. However, fabrication of a highly selective and sensitive H2S gas sensor material still remains a challenge, and direct analysis of real breath samples has not been properly attempted, to the best of our knowledge. To address the issue, herein, we introduce facile cofunctionalization of WO3 nanofibers with alkaline metal (Na) and noble metal (Pt) catalysts via the simple addition of sodium chloride (NaCl) and Pt nanoparticles (NPs), followed by electrospinning process. The Na-doping and Pt NPs decoration in WO3 grains induces the partial evolution of the Na2W4O13 phase, causing the buildup of Pt/Na2W4O13/WO3 multi-interface heterojunctions that selectively interacts with sulfur-containing species. As a result, we achieved the highest-ranked sensing performances, that is, response (Rair/Rgas) = 780 @ 1 ppm and selectivity (RH2S/REtOH) = 277 against 1 ppm ethanol, among the chemiresistor-based H2S sensors, owing to the synergistic chemical and electronic sensitization effects of the Pt NP/Na compound cocatalysts. The as-prepared sensing layer was proven to be practically effective for direct, and quantitative halitosis analysis based on the correlation (accuracy = 86.3%) between the H2S concentration measured using the direct breath signals obtained by our test device (80 cases) and gas chromatography. This study offers possibilities for direct, highly reliable and rapid detection of H2S in real human breath without the need of any collection or filtering equipment.


Subject(s)
Halitosis , Electronics , Halitosis/diagnosis , Humans , Oxides
5.
Sci Rep ; 11(1): 1238, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33441675

ABSTRACT

Bioelectrical impedance analysis (BIA) is used to analyze human body composition by applying a small alternating current through the body and measuring the impedance. The smaller the electrode of a BIA device, the larger the impedance measurement error due to the contact resistance between the electrode and human skin. Therefore, most commercial BIA devices utilize electrodes that are large enough (i.e., 4 × 1400 mm2) to counteract the contact resistance effect. We propose a novel method of compensating for contact resistance by performing 4-point and 2-point measurements alternately such that body impedance can be accurately estimated even with considerably smaller electrodes (outer electrodes: 68 mm2; inner electrodes: 128 mm2). Additionally, we report the use of a wrist-wearable BIA device with single-finger contact measurement and clinical test results from 203 participants at Seoul St. Mary's Hospital. The correlation coefficient and standard error of estimate of percentage body fat were 0.899 and 3.76%, respectively, in comparison with dual-energy X-ray absorptiometry. This result exceeds the performance level of the commercial upper-body portable body fat analyzer (Omron HBF-306). With a measurement time of 7 s, this sensor technology is expected to provide a new possibility of a wearable bioelectrical impedance analyzer, toward obesity management.


Subject(s)
Electric Impedance , Obesity Management , Obesity , Wearable Electronic Devices , Adolescent , Adult , Aged , Electrodes , Female , Humans , Male , Middle Aged , Obesity/pathology , Obesity/physiopathology
6.
RSC Adv ; 10(47): 28390-28396, 2020 Jul 27.
Article in English | MEDLINE | ID: mdl-35519138

ABSTRACT

Herein, a heterogeneous polymer micro valve and pump with a polypropylene (PP) membrane was developed in a low-cost manner via UV/ozone-assisted thermal fusion bonding. The proposed fabrication technique allowed for a geometrically selective bonding; consequently, the membrane was prevented from bonding with the valve seat of the diaphragm micro-valve, without patterning a protection layer or introducing an additional structure. The developed device withstands 480 kPa of static pressure and up to 350 kPa of a vibration pressure, providing sufficient bonding strength for microfluidic actuations. The fabricated micro valve and pump are fully characterized and compared with a poly(dimethylsiloxane) (PDMS) membrane glass device, showing comparable valving and pumping performance. As a result, the robust PP membrane micro valve and pump are simply implemented in a facile manner, and demonstrated excellent performance, which is highly desirable for mass production of disposable lab-on-a-chip (LOC) devices.

7.
Integr Comp Biol ; 54(6): 1034-42, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24760793

ABSTRACT

We present the results of a combined experimental and theoretical investigation of the mechanics of self-burial of some plant seeds whose morphologies respond to environmental changes in humidity. The seeds of Erodium and Pelargonium have hygroscopically responsive awns that play a critical role in their self-burial into soil. The awn, coiled in a dry state, uncoils to stretch linearly under highly humid condition because of a tilted arrangement of cellulose microfibrils in one of the layers of the awn's bilayered structure. By measuring the mechanical characteristics of the awns of Pelargonium carnosum, we find that the extensional force of the awn can be aptly modeled by the theory of elasticity for a coiled spring. We further show that although the resistance to the seed-head penetrating relatively coarse soils without spinning is large enough to block the digging seed, the rotation of the seed greatly reduces the soil's resistance down to a level the awn can easily overcome. Our mechanical analysis reveals that the self-burial of the seed is a sophisticated outcome of the helically coiled configuration of the awn.


Subject(s)
Models, Biological , Pelargonium , Seeds/anatomy & histology , Soil , Wettability , Biomechanical Phenomena , Cellulose/chemistry , Elasticity , Water/chemistry
8.
Anal Chem ; 84(18): 7912-8, 2012 Sep 18.
Article in English | MEDLINE | ID: mdl-22908991

ABSTRACT

We have developed a bead-packed microfluidic device with a built-in flexible wall to automate extraction of nucleic acids from methicillin-resistant Staphylococcus aureus (MRSA) in nasal swabs. The flexible polydimethylsiloxane (PDMS) membrane was designed to manipulate the surface-to-volume ratio (SVR) of bead-packed chambers in the range of 0.05 to 0.15 (µm(-1)) for a typical solid phase extraction protocol composed of binding, washing, and eluting. In particular, the pneumatically assisted close packing of beads led to an invariant SVR (0.15 µm(-1)) even with different bead amounts (10-16 mg), which allowed for consistent operation of the device and improved capture efficiency for bacteria cells. Furthermore, vigorous mixing by asynchronous membrane vibration enabled ca. 90% DNA recovery with ca. 10 µL of liquid solution from the captured cells on the bead surfaces. The full processes to detect MRSA in nasal swabs, i.e., nasal swab collection, prefiltration, on-chip DNA extraction, and real-time polymerase chain reaction (PCR) amplification, were successfully constructed and carried out to validate the capability to detect MRSA in nasal swab samples. This flexible microdevice provided an excellent analytical PCR detection sensitivity of ca. 61 CFU/swab with 95% confidence interval, which turned out to be higher than or similar to that of the commercial DNA-based MRSA detection techniques. This excellent performance would be attributed to the capability of the flexible bead-packed microdevice to enrich the analyte from a large initial sample (e.g., 1 mL) into a microscale volume of eluate (e.g., 10 µL). The proposed microdevice will find many applications as a solid phase extraction method toward various sample-to-answer systems.


Subject(s)
DNA, Bacterial/analysis , Methicillin-Resistant Staphylococcus aureus/genetics , Microfluidic Analytical Techniques/methods , Nasal Lavage Fluid/microbiology , DNA, Bacterial/isolation & purification , Dimethylpolysiloxanes/chemistry , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Microfluidic Analytical Techniques/instrumentation , Real-Time Polymerase Chain Reaction , Solid Phase Extraction , Staphylococcal Infections/microbiology , Surface Properties
9.
Lab Chip ; 11(21): 3649-55, 2011 Nov 07.
Article in English | MEDLINE | ID: mdl-21918771

ABSTRACT

We have developed a miniaturized bead-beating device to automate nucleic acids extraction from Gram-positive bacteria for molecular diagnostics. The microfluidic device was fabricated by sandwiching a monolithic flexible polydimethylsiloxane (PDMS) membrane between two glass wafers (i.e., glass-PDMS-glass), which acted as an actuator for bead collision via its pneumatic vibration without additional lysis equipment. The Gram-positive bacteria, S. aureus and methicillin-resistant S. aureus, were captured on surface-modified glass beads from 1 mL of initial sample solution and in situ lyzed by bead-beating operation. Then, 10 µL or 20 µL of bacterial DNA solution was eluted and amplified successfully by real-time PCR. It was found that liquid volume fraction played a crucial role in determining the cell lysis efficiency in a confined chamber by facilitating membrane deflection and bead motion. The miniaturized bead-beating operation disrupted most of S. aureus within 3 min, which turned out to be as efficient as the conventional benchtop vortexing machine or the enzyme-based lysis technique. The effective cell concentration was significantly enhanced with the reduction of initial sample volume by 50 or 100 times. Combination of such analyte enrichment and in situ bead-beating lysis provided an excellent PCR detection sensitivity amounting to ca. 46 CFU even for the Gram-positive bacteria. The proposed bead-beating microdevice is potentially useful as a nucleic acid extraction method toward a PCR-based sample-to-answer system.


Subject(s)
DNA, Bacterial/isolation & purification , Gram-Positive Bacteria/genetics , Automation , DNA, Bacterial/analysis , Dimethylpolysiloxanes/chemistry , Membranes, Artificial , Microfluidic Analytical Techniques , Miniaturization , Real-Time Polymerase Chain Reaction , Staphylococcus aureus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...