Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 15192, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956293

ABSTRACT

This article examines the effects of different storage conditions on selected physicochemical properties of three types of agro-biomass pellets: sunflower husks, wheat straw and hemp hurds, and wood pellets. The tests were carried out in a climatic chamber, which allows simulation of real storage conditions, i.e. conditions with high air humidity and variable (±) ambient air temperatures. The results showed higher degradability of agro-biomass pellets compared to woody biomass. The pellets degraded to a less extent at varying ± temperatures than at high humidity (90% RH). After complete moisture saturation, durability decreases for agro-pellets by an average of 9%, while after freezing and defreezing for sunflower husk pellets and woody pellets durability decreases by 2%, and for hemp hurd pellets by 11%. In contrast, strength-by-dropping index for agro-pellets decreased by 20% after being in the environment (30 °C and 90%RH) and 15% under varying temperature conditions. No change in the energy parameters of all pellets in the dry matter was noted. On the other hand, an increase in the moisture content of pellets when they are stored under different environmental conditions results in a decrease in calorific value.

2.
Environ Sci Pollut Res Int ; 30(37): 88197-88212, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37436628

ABSTRACT

The substrate mixtures were created in the study, using spent coffee grounds for Pleurotus ostreatus cultivation with the addition of straw and fluidized bed ash at 5 and 10 percent by weight relative to the total weight of coffee grounds. In order to determine the ability to accumulate heavy metals and the possibility of further waste management, analyses of micro- and macronutrients, biogenic elements, as well as the metal content of fungal fruiting bodies, mycelium and post-cultivation substrate were performed. The addition of 5 percent resulted in slower growth of mycelium and fruiting bodies, and with the addition of 10 percent, the growth of fruiting bodies was completely inhibited. The accumulation of elements such as (Cr), (Cu), (Ni), (Pb) and (Zn) was reduced in the fruiting bodies grown on the substrate with the addition of 5 percent fly ash, compared to spent coffee grounds without additives.


Subject(s)
Environmental Pollutants , Metals, Heavy , Pleurotus , Coffee , Coal Ash , Metals, Heavy/analysis
3.
J Environ Manage ; 290: 112487, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33873020

ABSTRACT

This paper presents the possibility of valorization of animal manure (camel and cow) by mixing it with agro-industrial biomass (cotton stalk and rapeseed oil cake) to produce pellets for use in power generation processes. Feedstocks were mixed in specific proportions based on certain assumptions concerning the energy and mechanical parameters of pellets. The assessment concerned both the combustion behavior as well as mechanical properties of four types of pellets derived from blends of animal manure and agro-industrial biomass. Thermogravimetry (TGA) and Differential Scanning Calorimetry (DSC) techniques are applied to analyze the reaction areas, characteristic temperatures as well as heat flow rates of raw materials and their blends. Results showed that addition of agro-industrial biomass (even 10%) to animal manure changed the specific combustion parameters: initiation and burn-out temperature and combustion time. For blends of cow manure (COM) and rapeseed oil cake (ROC), a reduction in the initiation temperature was achieved compared to the combustion of raw cow manure, and the combustion time increased by 1/3. In the case of camel manure (CAM) with the addition of cotton stalk (CS) the burn-out temperature and combustion time decreased. The addition of agro-biomass also causes a change in the heat release profiles, for the blends no pronounced DSC peaks are obtained in the area of devolatilization as it happens animal manure alone and in the area of fixed carbon combustion as for cotton stalk and rapeseed oil cake. The heat released from camel manure blends was 9.2-9.3 kJ/kg and from cow manure blends 10.2-10.4 kJ/kg. An evaluation of the physical and mechanical properties showed that all types of pellets at a moisture content of 10-15% have a similar drop strength in the range of 80-85%, while this strength decreases to 40-60% after the pellets have absorbed water.


Subject(s)
Lignin , Manure , Animals , Biomass , Thermogravimetry
SELECTION OF CITATIONS
SEARCH DETAIL
...