Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Cancer ; 124(2): 474-483, 2021 01.
Article in English | MEDLINE | ID: mdl-33082556

ABSTRACT

BACKGROUND: Chronic lymphocytic leukaemia (CLL) patients display a highly variable clinical course, with progressive acquisition of drug resistance. We sought to identify aberrant epigenetic traits that are enriched following exposure to treatment that could impact patient response to therapy. METHODS: Epigenome-wide analysis of DNA methylation was performed for 20 patients at two timepoints during treatment. The prognostic significance of differentially methylated regions (DMRs) was assessed in independent cohorts of 139 and 163 patients. Their functional role in drug sensitivity was assessed in vitro. RESULTS: We identified 490 DMRs following exposure to therapy, of which 31 were CLL-specific and independent of changes occurring in normal B-cell development. Seventeen DMR-associated genes were identified as differentially expressed following treatment in an independent cohort. Methylation of the HOXA4, MAFB and SLCO3A1 DMRs was associated with post-treatment patient survival, with HOXA4 displaying the strongest association. Re-expression of HOXA4 in cell lines and primary CLL cells significantly increased apoptosis in response to treatment with fludarabine, ibrutinib and idelalisib. CONCLUSION: Our study demonstrates enrichment for multiple CLL-specific epigenetic traits in response to chemotherapy that predict patient outcomes, and particularly implicate epigenetic silencing of HOXA4 in reducing the sensitivity of CLL cells to therapy.


Subject(s)
Drug Resistance, Neoplasm/genetics , Homeodomain Proteins/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Neoplasm Recurrence, Local/genetics , Transcription Factors/genetics , DNA Methylation/genetics , Epigenomics , Female , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Male
2.
J Clin Invest ; 130(1): 258-271, 2020 01 02.
Article in English | MEDLINE | ID: mdl-31581151

ABSTRACT

Potentiating radiotherapy and chemotherapy by inhibiting DNA damage repair is proposed as a therapeutic strategy to improve outcomes for patients with solid tumors. However, this approach risks enhancing normal tissue toxicity as much as tumor toxicity, thereby limiting its translational impact. Using NU5455, a newly identified highly selective oral inhibitor of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) activity, we found that it was indeed possible to preferentially augment the effect of targeted radiotherapy on human orthotopic lung tumors without influencing acute DNA damage or a late radiation-induced toxicity (fibrosis) to normal mouse lung. Furthermore, while NU5455 administration increased both the efficacy and the toxicity of a parenterally administered topoisomerase inhibitor, it enhanced the activity of doxorubicin released locally in liver tumor xenografts without inducing any adverse effect. This strategy is particularly relevant to hepatocellular cancer, which is treated clinically with localized drug-eluting beads and for which DNA-PKcs activity is reported to confer resistance to treatment. We conclude that transient pharmacological inhibition of DNA-PKcs activity is effective and tolerable when combined with localized DNA-damaging therapies and thus has promising clinical potential.


Subject(s)
Carcinoma, Hepatocellular , DNA-Activated Protein Kinase/antagonists & inhibitors , Liver Neoplasms, Experimental , Neoplasm Proteins/antagonists & inhibitors , Protein Kinase Inhibitors , Animals , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/enzymology , Carcinoma, Hepatocellular/pathology , DNA-Activated Protein Kinase/metabolism , Doxorubicin/pharmacology , Humans , Liver Neoplasms, Experimental/drug therapy , Liver Neoplasms, Experimental/enzymology , Liver Neoplasms, Experimental/pathology , MCF-7 Cells , Mice , Neoplasm Proteins/metabolism , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Xenograft Model Antitumor Assays
3.
Oncotarget ; 6(41): 43978-91, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26539646

ABSTRACT

In chronic lymphocytic leukemia (CLL), mutation and loss of p53 and ATM abrogate DNA damage signalling and predict poorer response and shorter survival. We hypothesised that poly (ADP-ribose) polymerase (PARP) activity, which is crucial for repair of DNA breaks induced by oxidative stress or chemotherapy, may be an additional predictive biomarker and a target for therapy with PARP inhibitors.We measured PARP activity in 109 patient-derived CLL samples, which varied widely (192 - 190052 pmol PAR/106 cells) compared to that seen in healthy volunteer lymphocytes (2451 - 7519 pmol PAR/106 cells). PARP activity was associated with PARP1 protein expression and endogenous PAR levels. PARP activity was not associated with p53 or ATM loss, Binet stage, IGHV mutational status or survival, but correlated with Bcl-2 and Rel A (an NF-kB subunit). Levels of 8-hydroxy-2'-deoxyguanosine in DNA (a marker of oxidative damage) were not associated with PAR levels or PARP activity. The potent PARP inhibitor, talazoparib (BMN 673), inhibited CD40L-stimulated proliferation of CLL cells at nM concentrations, independently of Binet stage or p53/ATM function.PARP activity is highly variable in CLL and correlates with stress-induced proteins. Proliferating CLL cells (including those with p53 or ATM loss) are highly sensitive to the PARP inhibitor talazoparib.


Subject(s)
Antineoplastic Agents/pharmacology , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Phthalazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerases/metabolism , Adult , Area Under Curve , Biomarkers, Tumor , DNA Damage/drug effects , Enzyme-Linked Immunosorbent Assay , Female , Humans , In Situ Hybridization, Fluorescence , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Male , Middle Aged , Poly (ADP-Ribose) Polymerase-1 , ROC Curve , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...