Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Rev Sci Instrum ; 94(5)2023 May 01.
Article in English | MEDLINE | ID: mdl-37171234

ABSTRACT

The Oak Ridge National Laboratory is planning to build the Second Target Station (STS) at the Spallation Neutron Source (SNS). STS will host a suite of novel instruments that complement the First Target Station's beamline capabilities by offering an increased flux for cold neutrons and a broader wavelength bandwidth. A novel neutron imaging beamline, named the Complex, Unique, and Powerful Imaging Instrument for Dynamics (CUPI2D), is among the first eight instruments that will be commissioned at STS as part of the construction project. CUPI2D is designed for a broad range of neutron imaging scientific applications, such as energy storage and conversion (batteries and fuel cells), materials science and engineering (additive manufacturing, superalloys, and archaeometry), nuclear materials (novel cladding materials, nuclear fuel, and moderators), cementitious materials, biology/medical/dental applications (regenerative medicine and cancer), and life sciences (plant-soil interactions and nutrient dynamics). The innovation of this instrument lies in the utilization of a high flux of wavelength-separated cold neutrons to perform real time in situ neutron grating interferometry and Bragg edge imaging-with a wavelength resolution of δλ/λ ≈ 0.3%-simultaneously when required, across a broad range of length and time scales. This manuscript briefly describes the science enabled at CUPI2D based on its unique capabilities. The preliminary beamline performance, a design concept, and future development requirements are also presented.

2.
Biomacromolecules ; 18(4): 1097-1107, 2017 04 10.
Article in English | MEDLINE | ID: mdl-28225603

ABSTRACT

Neutron reflectometry was used to monitor structural variations in surface-supported dimyristoylphosphatidycholine (DMPC) bilayers induced by the addition of Triton X-100, a surfactant commonly used to aid solubilization of membrane proteins, and the coaddition of a membrane spanning nonionic amphiphilic triblock copolymer, (PEO117-PPO47-PEO117, Pluronic F98). Surfactant addition causes slight compression of the bilayer thickness and the creation of a distinct EO layer that increases the hydrophilic layer proximal to the supporting substrate (i.e., a water and EO gap between the lipid bilayer and quartz) to 6.8 ± 0.4 Å. Addition of the triblock copolymer into the DMPC:Triton X-100 bilayer increases the complexity of (broadens) the lipid phase transition, further compresses the bilayer, and continues to expand the proximal hydrophilic layer thickness. The observed structural changes are temperature dependent with transmembrane polymer insertion achieved at 37 °C, leading to a compressed membrane thickness of 39.2 ± 0.2 Å and proximal gap of 45.0 ± 0.2 Å. Temperature-driven exclusion of the polymer at 15 °C causes partitioning of the polymer into the proximal space generating a large hydrogel cushion 162 ± 16 Å thick. An intermediate gap width (10-27 Å) is achieved at room temperature (22-25 °C). The temperature-driven changes in the proximal hydrophilic gap dimensions are shown to be reversible, but thermal history causes variation in magnitude. Temperature-driven changes in polymer association with a supported lipid bilayer offer a facile means to reversibly control both the membrane characteristics as well as the separation between membrane and solid substrate.


Subject(s)
Lipid Bilayers/chemistry , Polymers/chemistry , Dimyristoylphosphatidylcholine/chemistry , Hydrophobic and Hydrophilic Interactions , Neutrons , Octoxynol/chemistry , Phase Transition , Surface Properties , Surface-Active Agents/chemistry , Temperature
3.
Langmuir ; 32(17): 4382-91, 2016 05 03.
Article in English | MEDLINE | ID: mdl-27065348

ABSTRACT

Neutron reflectivity (NR) and fluorescent microscopy (FM) were used to study the interactions of human (hIAPP) and rat (rIAPP) islet amyloid polypeptides with several formulations of supported model lipid bilayers at the solid-liquid interface. Aggregation and deposition of islet amyloid polypeptide is correlated with the pathology of many diseases, including Alzheimer's, Parkinson, and type II diabetes (T2DM). A central component of T2DM pathology is the deposition of fibrils in the endocrine pancreas, which is toxic to the insulin secreting ß-cells. The molecular mechanism by which the cell death occurs is not yet understood, but existing evidence points toward interactions of IAPP oligomers with cellular membranes in a manner leading to loss of their integrity. Our NR and FM results showed that the human sequence variant, hIAPP, had little or no effect on bilayers composed of saturated-acyl chains like zwitterionic DPPC, anionic DPPG, and mixed 80:20 mol % DPPC:DPPG bilayers. In marked contrast, the bilayer structure and stability of anionic unsaturated DOPG were sensitive to protein interaction, and the bilayer was partly solubilized by hIAPP under the conditions used here. The rIAPP, which is considered less toxic, had no perturbing effects on any of the above membrane formulations. Understanding the conditions that result in membrane disruption by hIAPP can be crucial in developing counter strategies to fight T2DM and also physicochemically similar neurodegenerative diseases such as Alzheimer's.


Subject(s)
Islet Amyloid Polypeptide/pharmacology , Lipid Bilayers/chemistry , Neutron Diffraction , Animals , Humans , Islet Amyloid Polypeptide/chemistry , Microscopy, Fluorescence , Models, Molecular , Protein Conformation , Rats
4.
Biointerphases ; 10(1): 019014, 2015 Mar 16.
Article in English | MEDLINE | ID: mdl-25779088

ABSTRACT

Because of its high sensitivity for light elements and the scattering contrast manipulation via isotopic substitutions, neutron reflectometry (NR) is an excellent tool for studying the structure of soft-condensed material. These materials include model biophysical systems as well as in situ living tissue at the solid-liquid interface. The penetrability of neutrons makes NR suitable for probing thin films with thicknesses of 5-5000 Å at various buried, for example, solid-liquid, interfaces [J. Daillant and A. Gibaud, Lect. Notes Phys. 770, 133 (2009); G. Fragneto-Cusani, J. Phys.: Condens. Matter 13, 4973 (2001); J. Penfold, Curr. Opin. Colloid Interface Sci. 7, 139 (2002)]. Over the past two decades, NR has evolved to become a key tool in the characterization of biological and biomimetic thin films. In the current report, the authors would like to highlight some of our recent accomplishments in utilizing NR to study highly complex systems, including in-situ experiments. Such studies will result in a much better understanding of complex biological problems, have significant medical impact by suggesting innovative treatment, and advance the development of highly functionalized biomimetic materials.


Subject(s)
Chemistry Techniques, Analytical/methods , Complex Mixtures/chemistry , Membranes/chemistry , Neutrons
5.
Langmuir ; 31(9): 2870-8, 2015 Mar 10.
Article in English | MEDLINE | ID: mdl-25689755

ABSTRACT

The structure of layer-by-layer (LbL) deposited nanofilm coatings consists of alternating polyethylenimine (PEI) and polystyrenesulfonate (PSS) films deposited on a single crystal quartz substrate. LbL-deposited nanofilms were investigated by neutron reflectomery (NR) in contact with water in the static and fluid shear stress conditions. The fluid shear stress was applied through a laminar flow of the liquid parallel to the quartz/polymer interface in a custom-built solid-liquid interface cell. The scattering length density profiles obtained from NR results of these polyelectrolyte multilayers (PEM), measured under different shear conditions, showed proportional decrease of volume fraction of water hydrating the polymers. For the highest shear rate applied (ca. 6800 s(-1)) the water volume fraction decreased by approximately 7%. The decrease of the volume fraction of water was homogeneous through the thickness of the film. Since there were not any significant changes in the total polymer thickness, it resulted in negative osmotic pressures in the film. The PEM films were compared with the behavior of thin films of thermoresponsive poly(N-isopropylacrylamide) (pNIPAM) deposited via spin-coating. The PEM and pNIPAM differ in their interactions with water molecules, and they showed opposite behaviors under the fluid shear stress. In both cases the polymer hydration was reversible upon the restoration of static conditions. A theoretical explanation is given to explain this difference in the effect of shear on hydration of polymeric thin films.

6.
Am J Physiol Lung Cell Mol Physiol ; 306(1): L1-9, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24163142

ABSTRACT

Endothelial cells, master gatekeepers of the cardiovascular system, line its inner boundary from the heart to distant capillaries constantly exposed to blood flow. Interendothelial signaling and the monolayers adhesion to the underlying collagen-rich basal lamina are key in physiology and disease. Using neutron scattering, we report the first ever interfacial structure of endothelial monolayers under dynamic flow conditions mimicking the cardiovascular system. Endothelial adhesion (defined as the separation distance ℓ between the basal cell membrane and solid boundary) is explained using developed interfacial potentials and intramembrane segregation of specific adhesion proteins. Our method provides a powerful tool for the biophysical study of cellular layer adhesion strength in living tissues.


Subject(s)
Cell Adhesion , Endothelial Cells/physiology , Endothelium, Vascular/cytology , Models, Biological , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/ultrastructure , Cells, Cultured , Endothelial Cells/ultrastructure , Humans , Neutron Diffraction , Scattering, Small Angle , Stress, Physiological
7.
Mod Phys Lett B ; 28(30)2014 Dec 10.
Article in English | MEDLINE | ID: mdl-25705067

ABSTRACT

Neutron reflectometry (NR) was used to examine various live cells adhesion to quartz substrates under different environmental conditions, including flow stress. To the best of our knowledge, these measurements represent the first successful visualization and quantization of the interface between live cells and a substrate with sub-nanometer resolution. In our first experiments, we examined live mouse fibroblast cells as opposed to past experiments using supported lipids, proteins, or peptide layers with no associated cells. We continued the NR studies of cell adhesion by investigating endothelial monolayers and glioblastoma cells under dynamic flow conditions. We demonstrated that neutron reflectometry is a powerful tool to study the strength of cellular layer adhesion in living tissues, which is a key factor in understanding the physiology of cell interactions and conditions leading to abnormal or disease circumstances. Continuative measurements, such as investigating changes in tumor cell - surface contact of various glioblastomas, could impact advancements in tumor treatments. In principle, this can help us to identify changes that correlate with tumor invasiveness. Pursuit of these studies can have significant medical impact on the understanding of complex biological problems and their effective treatment, e.g. for the development of targeted anti-invasive therapies.

8.
Faraday Discuss ; 158: 157-69; discussion 239-66, 2012.
Article in English | MEDLINE | ID: mdl-23234166

ABSTRACT

Soy milk is a highly stable emulsion mainly due to the presence of oleosomes, which are oil bodies and function as lipid storage organelles in plants, e.g., in seeds. Oleosomes are micelle-like structures with an outer phospholipid monolayer, an interior filled with triacylglycerides (TAGs), and oleosins anchored hairpin-like into the structure with their hydrophilic parts remaining outside the oleosomes, completely covering their surface (K. Hsieh and A. H. C. Huang, Plant Physiol., 2004, 136, 3427-3434). Oleosins are alkaline proteins of 15-26 kDa (K. Hsieh and A. H. C. Huang, Plant Physiol., 2004, 136, 3427-3434) which are expressed during seed development and maturation and play a major role in the stability of oil bodies. Additionally, the oil bodies of seeds seem to have the highest impact on coalescence, probably due to the required protection against environmental stress during dormancy and germination compared to, e.g., vertebrates' lipoproteins. Surface pressure investigations and Brewster angle microscopy of oleosomes purified from raw soy milk were executed to reveal their diffusion to the air-water interface, rupture, adsorption and structural modification over time at different subphase conditions. Destroying the surface portions of the oleosins by tryptic digestion induced coalescence of oleosomes (J. Tzen and A. Huang, J. Cell. Biol., 1992, 117, 327-335) and revealed severe changes in their adsorption kinetics. Such investigations will help to determine the effects behind oleosome stability and are necessary for a better understanding of the principal function of oleosins and their interactions with phospholipids.


Subject(s)
Glycine max/chemistry , Plant Proteins/chemistry , Seeds/chemistry , Soy Milk/chemistry , Triglycerides/chemistry , Adsorption , Air , Electrophoresis, Polyacrylamide Gel , Emulsions , Kinetics , Liposomes/chemistry , Micelles , Microscopy , Surface Properties , Trypsin/chemistry , Water
9.
J Phys Chem B ; 116(35): 10832-41, 2012 Sep 06.
Article in English | MEDLINE | ID: mdl-22823247

ABSTRACT

Soy milk is a highly stable emulsion, the stability being mainly due to the presence of oleosomes or oil bodies, spherical structures filled with triacylglycerides (TAGs) and surrounded by a monolayer of phospholipids and proteins called oleosins. For oleosomes purified from raw soymilk, surface pressure investigations and Brewster angle microscopy have been performed to unveil their adsorption, rupture and structural changes over time at different subphase conditions (pH, ionic strength). Such investigations are important for (industrial) food applications of oleosomes, but are also useful for the understanding of the general behavior of proteins and phospholipids at interfaces. In addition a better comprehension of the highly stable oleosomes can lead to advancements in liposome manufacturing, e.g., for storage and transport applications. Although oleosomes have their origin in food systems, their unique stability and physical behavior show transferable characteristics which lead to a much better understanding of the description of any kind of emulsion. This study is one of the first steps toward the comparison of natural emulsification concepts based on different physical structures: e.g., the animals' low density lipoproteins, where apolipoproteins with phospholipids are located only at the interface and plant oleosomes with its oleosins, which are embedded in a phospholipid monolayer and reach deep inside the oil phase.


Subject(s)
Air , Glycine max/metabolism , Plant Proteins/chemistry , Water/chemistry , Emulsions/chemistry , Hydrogen-Ion Concentration , Kinetics , Osmolar Concentration , Phase Transition , Phospholipids/chemistry , Plant Proteins/metabolism
10.
Langmuir ; 27(6): 2709-16, 2011 Mar 15.
Article in English | MEDLINE | ID: mdl-21319762

ABSTRACT

Tethered bilayer lipid membranes have been used as a model system to mimic the interactions between the whey protein ß-lactoglobulin and a lipid interface. The approach allowed for a detailed study of the lipid-protein interactions, the results being of possible importance in food and cosmetic applications. For such applications, lipid-protein interactions and the interfacial behavior are vital factors in controlling and manipulating process conditions such as emulsion stabilization and gelification. Lipid composition as well as the structural properties of the protein governed their interactions, which were probed by a combination of surface plasmon spectroscopy, neutron reflectivity, and electrochemical impedance spectroscopy. Comparison of results obtained using native and a partially unfolded protein indicated that the protein preferentially forms loosely packed layers at the lipid interface.


Subject(s)
Lactoglobulins/chemistry , Lipid Bilayers/chemistry
11.
Langmuir ; 26(14): 12049-53, 2010 Jul 20.
Article in English | MEDLINE | ID: mdl-20557079

ABSTRACT

Protein-lipid interactions play an important role in a variety of fields, for example in pharmaceutical research, biosensing, or food science. However, the underlying fundamental processes that govern the interplay of lipids and proteins are often very complex and are therefore studied using model systems. Here, Langmuir monolayers were used to probe the interaction of a model protein with lipid films at the air-water interface. The protein beta-lactoglobulin (beta lg) is the major component in bovine milk serum, where it coexists with the milk fat globular membrane. During homogenization of milk, beta lg adsorbs to the interface of lipid fat globules and stabilizes the oil-in-water emulsion. pH and ionic strength of the subphase had a significant effect on the surface activity of the protein. Additionally, by using lipids with different charges, it could be shown that the interactions between beta lg and a phospholipid layer were driven by hydrophobic as well as by electrostatic interactions. beta lg preferentially interacted with phospholipids in an unfolded state. This could be either achieved by denaturation at the air-water interface or due to electrostatic interactions that weaken the intramolecular forces of the protein.


Subject(s)
Air , Lactoglobulins/metabolism , Lipid Metabolism , Water/chemistry , Animals , Cattle , Cell Membrane/metabolism , Hydrogen-Ion Concentration , Protein Binding , Surface Properties
12.
Langmuir ; 26(13): 11035-40, 2010 Jul 06.
Article in English | MEDLINE | ID: mdl-20504013

ABSTRACT

Solid supported membrane systems have been established as biomimetic architectures, which allow for the systematic investigation of various membrane-related processes. Especially tethered bilayer lipid membranes have been a successful concept. They consist of a lipid bilayer that is covalently anchored to a solid substrate through a spacer group. The submembrane part, which is defined by the spacer group, is important especially for the biological activity of incorporated membrane proteins. Anchor lipids with different spacer and anchor groups have been synthesized, and the resulting membrane structures have been investigated by neutron reflectivity. The different molecular architectures had a significant effect on both the amount of water incorporated in the spacer region and the electrical properties of the bilayer. A detailed understanding of the structure-function relationship allows for an optimized design of the molecular architecture with respect to possible applications, for example an optimized protein incorporation.


Subject(s)
Lipid Bilayers/chemistry , Electrochemical Techniques , Models, Theoretical , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...