Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Commun Biol ; 7(1): 541, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714838

ABSTRACT

Age-related diseases pose great challenges to health care systems worldwide. During aging, endothelial senescence increases the risk for cardiovascular disease. Recently, it was described that Phosphatase 1 Nuclear Targeting Subunit (PNUTS) has a central role in cardiomyocyte aging and homeostasis. Here, we determine the role of PNUTS in endothelial cell aging. We confirm that PNUTS is repressed in senescent endothelial cells (ECs). Moreover, PNUTS silencing elicits several of the hallmarks of endothelial aging: senescence, reduced angiogenesis and loss of barrier function. Findings are validate in vivo using endothelial-specific inducible PNUTS-deficient mice (Cdh5-CreERT2;PNUTSfl/fl), termed PNUTSEC-KO. Two weeks after PNUTS deletion, PNUTSEC-KO mice present severe multiorgan failure and vascular leakage. Transcriptomic analysis of PNUTS-silenced HUVECs and lungs of PNUTSEC-KO mice reveal that the PNUTS-PP1 axis tightly regulates the expression of semaphorin 3B (SEMA3B). Indeed, silencing of SEMA3B completely restores barrier function after PNUTS loss-of-function. These results reveal a pivotal role for PNUTS in endothelial homeostasis through a SEMA3B downstream pathway that provides a potential target against the effects of aging in ECs.


Subject(s)
Cellular Senescence , Human Umbilical Vein Endothelial Cells , Semaphorins , Animals , Humans , Mice , Aging/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Mice, Inbred C57BL , Mice, Knockout , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Semaphorins/metabolism , Semaphorins/genetics
2.
iScience ; 27(1): 108681, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38269100

ABSTRACT

Aging increases the risk of age-related diseases, imposing substantial healthcare and personal costs. Targeting fundamental aging mechanisms pharmacologically can promote healthy aging and reduce this disease susceptibility. In this work, we employed transcriptome-based drug screening to identify compounds emulating transcriptional signatures of long-lived genetic interventions. We discovered compound 60 (Cmpd60), a selective histone deacetylase 1 and 2 (HDAC1/2) inhibitor, mimicking diverse longevity interventions. In extensive molecular, phenotypic, and bioinformatic assessments using various cell and aged mouse models, we found Cmpd60 treatment to improve age-related phenotypes in multiple organs. Cmpd60 reduces renal epithelial-mesenchymal transition and fibrosis in kidney, diminishes dementia-related gene expression in brain, and enhances cardiac contractility and relaxation for the heart. In sum, our two-week HDAC1/2 inhibitor treatment in aged mice establishes a multi-tissue, healthy aging intervention in mammals, holding promise for therapeutic translation to promote healthy aging in humans.

3.
Mol Ther ; 31(6): 1807-1828, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37073128

ABSTRACT

While it is experimentally supported that impaired myocardial vascularization contributes to a mismatch between myocardial oxygen demand and supply, a mechanistic basis for disruption of coordinated tissue growth and angiogenesis in heart failure remains poorly understood. Silencing strategies that impair microRNA biogenesis have firmly implicated microRNAs in the regulation of angiogenesis, and individual microRNAs prove to be crucial in developmental or tumor angiogenesis. A high-throughput functional screening for the analysis of a whole-genome microRNA silencing library with regard to their phenotypic effect on endothelial cell proliferation as a key parameter, revealed several anti- and pro-proliferative microRNAs. Among those was miR-216a, a pro-angiogenic microRNA which is enriched in cardiac microvascular endothelial cells and reduced in expression under cardiac stress conditions. miR-216a null mice display dramatic cardiac phenotypes related to impaired myocardial vascularization and unbalanced autophagy and inflammation, supporting a model where microRNA regulation of microvascularization impacts the cardiac response to stress.


Subject(s)
Heart Failure , MicroRNAs , Animals , Mice , Endothelial Cells/metabolism , Heart Failure/metabolism , MicroRNAs/metabolism , Myocardium/metabolism , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Physiologic/genetics
5.
Front Cardiovasc Med ; 10: 1300375, 2023.
Article in English | MEDLINE | ID: mdl-38259314

ABSTRACT

Heart failure with preserved ejection fraction (HFpEF) is the largest unmet clinical need in cardiovascular medicine. Despite decades of research, the treatment option for HFpEF is still limited, indicating our ongoing incomplete understanding on the underlying molecular mechanisms. Non-coding RNAs, comprising of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are non-protein coding RNA transcripts, which are implicated in various cardiovascular diseases. However, their role in the pathogenesis of HFpEF is unknown. Here, we discuss the role of miRNAs, lncRNAs and circRNAs that are involved in the pathophysiology of HFpEF, namely microvascular dysfunction, inflammation, diastolic dysfunction and cardiac fibrosis. We interrogated clinical evidence and dissected the molecular mechanisms of the ncRNAs by looking at the relevant in vivo and in vitro models that mimic the co-morbidities in patients with HFpEF. Finally, we discuss the potential of ncRNAs as biomarkers and potential novel therapeutic targets for future HFpEF treatment.

6.
Clin Sci (Lond) ; 136(15): 1157-1178, 2022 08 12.
Article in English | MEDLINE | ID: mdl-35946958

ABSTRACT

Cardiovascular diseases are the leading cause of death and debility worldwide. Various molecular mechanisms have been studied to better understand the development and progression of cardiovascular pathologies with hope to eradicate these diseases. With the advancement of the sequencing technology, it is revealed that the majority of our genome is non-coding. A growing body of literature demonstrates the critical role of long non-coding RNAs (lncRNAs) as epigenetic regulators of gene expression. LncRNAs can regulate cellular biological processes through various distinct molecular mechanisms. The abundance of lncRNAs in the cardiovascular system indicates their significance in cardiovascular physiology and pathology. LncRNA H19, in particular, is a highly evolutionarily conserved lncRNA that is enriched in cardiac and vascular tissue, underlining its importance in maintaining homeostasis of the cardiovascular system. In this review, we discuss the versatile function of H19 in various types of cardiovascular diseases. We highlight the current literature on H19 in the cardiovascular system and demonstrate how dysregulation of H19 induces the development of cardiovascular pathophysiology.


Subject(s)
Cardiovascular Diseases , Cardiovascular System , RNA, Long Noncoding , Biology , Cardiovascular Diseases/genetics , Cardiovascular System/metabolism , Heart , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
7.
FEBS Lett ; 596(11): 1367-1387, 2022 06.
Article in English | MEDLINE | ID: mdl-35531641

ABSTRACT

The advancement of medical technology has led not only to an increase in life expectancy but also to a rise in aging-related diseases. Aging promotes metabolic disorders, in turn affecting cardiovascular health. Derailment of biological processes in the pancreas, liver, adipose tissue, and skeletal muscle impairs glucose and lipid metabolism, and mitochondrial function, triggering the development of diabetes and lipid-related disorders that inflict damage on cardiac and vascular tissues. Long noncoding RNAs (lncRNAs) regulate a wide range of biological process and are one of the key factors controlling metabolism and mitochondria. Here, we discuss the versatile function of lncRNAs involved in the metabolic regulation of glucose and lipid, and mitochondrial function, and how the dysregulation of lncRNAs induces the development of various metabolic disorders and their cardiovascular consequences.


Subject(s)
Cardiovascular Diseases , RNA, Long Noncoding , Cardiovascular Diseases/genetics , Cardiovascular Diseases/metabolism , Glucose/metabolism , Humans , Lipids , Muscle, Skeletal/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
8.
Cardiovasc Res ; 118(10): 2227-2228, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35416964
9.
Mol Ther ; 30(6): 2257-2273, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35278675

ABSTRACT

As mediators of intercellular communication, extracellular vesicles containing molecular cargo, such as microRNAs, are secreted by cells and taken up by recipient cells to influence their cellular phenotype and function. Here we report that cardiac stress-induced differential microRNA content, with miR-200c-3p being one of the most enriched, in cardiomyocyte-derived extracellular vesicles mediates functional cross-talk with endothelial cells. Silencing of miR-200c-3p in mice subjected to chronic increased cardiac pressure overload resulted in attenuated hypertrophy, smaller fibrotic areas, higher capillary density, and preserved cardiac ejection fraction. We were able to maximally rescue microvascular and cardiac function with very low doses of antagomir, which specifically silences miR-200c-3p expression in non-myocyte cells. Our results reveal vesicle transfer of miR-200c-3p from cardiomyocytes to cardiac endothelial cells, underlining the importance of cardiac intercellular communication in the pathophysiology of heart failure.


Subject(s)
Extracellular Vesicles , MicroRNAs , Animals , Cell Communication , Endothelial Cells/metabolism , Extracellular Vesicles/metabolism , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism
10.
Kidney Int ; 99(5): 1088-1101, 2021 05.
Article in English | MEDLINE | ID: mdl-33359500

ABSTRACT

Chronic kidney disease (CKD) promotes development of cardiac abnormalities and is highly prevalent in patients with heart failure, particularly in those with preserved ejection fraction. CKD is associated with endothelial dysfunction, however, whether CKD can induce impairment of endothelium-to-cardiomyocyte crosstalk leading to impairment of cardiomyocyte function is not known. The sodium-glucose co-transporter 2 inhibitor, empagliflozin, reduced cardiovascular events in diabetic patients with or without CKD, suggesting its potential as a new treatment for heart failure with preserved ejection fraction. We hypothesized that uremic serum from patients with CKD would impair endothelial control of cardiomyocyte relaxation and contraction, and that empagliflozin would protect against this effect. Using a co-culture system of human cardiac microvascular endothelial cells with adult rat ventricular cardiomyocytes to measure cardiomyocyte relaxation and contraction, we showed that serum from patients with CKD impaired endothelial enhancement of cardiomyocyte function which was rescued by empagliflozin. Exposure to uremic serum reduced human cardiac microvascular endothelial cell nitric oxide bioavailability, and increased mitochondrial reactive oxygen species and 3-nitrotyrosine levels, indicating nitric oxide scavenging by reactive oxygen species. Empagliflozin attenuated uremic serum-induced generation of endothelial mitochondrial reactive oxygen species, leading to restoration of nitric oxide production and endothelium-mediated enhancement of nitric oxide levels in cardiomyocytes, an effect largely independent of sodium-hydrogen exchanger-1. Thus, empagliflozin restores the beneficial effect of cardiac microvascular endothelial cells on cardiomyocyte function by reducing mitochondrial oxidative damage, leading to reduced reactive oxygen species accumulation and increased endothelial nitric oxide bioavailability.


Subject(s)
Myocytes, Cardiac , Renal Insufficiency, Chronic , Animals , Benzhydryl Compounds , Endothelial Cells , Endothelium , Endothelium, Vascular , Glucosides , Humans , Nitric Oxide , Rats , Renal Insufficiency, Chronic/drug therapy
11.
Cell Physiol Biochem ; 53(5): 865-886, 2019.
Article in English | MEDLINE | ID: mdl-31724838

ABSTRACT

BACKGROUND/AIMS: Heart failure is characterized by chronic low-grade vascular inflammation, which in itself can lead to endothelial dysfunction. Clinical trials showed reductions in heart failure-related hospitalizations of type 2 diabetic patients using sodium glucose co-transporter 2 inhibitors (SGLT2i's). Whether and how SGLT2i's directly affect the endothelium under inflammatory conditions is not completely understood. The aim of the study was to investigate whether the SGLT2i Empagliflozin (EMPA) and Dapagliflozin (DAPA) reduce tumor necrosis factor α (TNFα) induced endothelial inflammation in vitro. METHODS: Human coronary arterial endothelial cells (HCAECs) and human umbilical vein endothelial cells (HUVECs) were (pre-)incubated with 1 µM EMPA or DAPA and subsequently exposed to 10 ng/ml TNFα. ROS and NO were measured using live cell imaging. Target proteins were either determined by infrared western blotting or fluorescence activated cell sorting (FACS). The connection between Cav-1 and eNOS was determined by co-immunoprecipitation. RESULTS: Nitric oxide (NO) bioavailability was reduced by TNFα and both EMPA and DAPA restored NO levels in TNFα-stimulated HCAECs. Intracellular ROS was increased by TNFα, and this increase was completely abolished by EMPA and DAPA in HCAECs by means of live cell imaging. eNOS signaling was significantly disturbed after 24 h when cells were exposed to TNFα for 24h, yet the presence of both SGLT2is did not prevent this disruption. TNFα-induced enhanced permeability at t=24h was unaffected in HUVECs by EMPA. Similarly, adhesion molecule expression (VCAM-1 and ICAM-1) was elevated after 4h TNFα (1.5-5.5 fold increase of VCAM-1 and 4-12 fold increase of ICAM-1) but were unaffected by EMPA and DAPA in both cell types. Although we detected expression of SGLT2 protein levels, the fact that we could not silence this expression by means of siRNA and the mRNA levels of SGLT2 were not detectable in HCAECs, suggests aspecificity or our SGLT2 antibody and absence of SGLT2 in our cells. CONCLUSION: These data suggest that EMPA and DAPA rather restore NO bioavailability by inhibiting ROS generation than by affecting eNOS expression or signaling, barrier function and adhesion molecules expression in TNFα-induced endothelial cells. Furthermore, the observed effects cannot be ascribed to the inhibition of SGLT2 in endothelial cells.


Subject(s)
Benzhydryl Compounds/pharmacology , Down-Regulation/drug effects , Glucosides/pharmacology , Nitric Oxide/metabolism , Reactive Oxygen Species/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Coronary Vessels/cytology , Endothelial Cells/cytology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Intercellular Adhesion Molecule-1/metabolism , Nitric Oxide Synthase Type III/metabolism , Permeability/drug effects , Signal Transduction/drug effects , Sodium-Glucose Transporter 2/genetics , Sodium-Glucose Transporter 2/metabolism , Vascular Cell Adhesion Molecule-1
12.
JACC Basic Transl Sci ; 4(5): 575-591, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31768475

ABSTRACT

The positive findings of the EMPA-REG OUTCOME trial (Randomized, Placebo-Controlled Cardiovascular Outcome Trial of Empagliflozin) on heart failure (HF) outcome in patients with type 2 diabetes mellitus suggest a direct effect of empagliflozin on the heart. These patients frequently have HF with preserved ejection fraction (HFpEF), in which a metabolic risk-related pro-inflammatory state induces cardiac microvascular endothelial cell (CMEC) dysfunction with subsequent cardiomyocyte (CM) contractility impairment. This study showed that CMECs confer a direct positive effect on contraction and relaxation of CMs, an effect that requires nitric oxide, is diminished after CMEC stimulation with tumor necrosis factor-α, and is restored by empagliflozin. Our findings on the effect of empagliflozin on CMEC-mediated preservation of CM function suggests that empagliflozin can be used to treat the cardiac mechanical implications of microvascular dysfunction in HFpEF.

13.
Toxins (Basel) ; 11(8)2019 08 02.
Article in English | MEDLINE | ID: mdl-31382511

ABSTRACT

Indoxyl sulfate (IS) is an accumulative protein-bound uremic toxin found in patients with kidney disease. It is reported that IS impairs the vascular endothelium, but a comprehensive overview of all mechanisms active in IS-injury currently remains lacking. Here we performed RNA sequencing in human umbilical vein endothelial cells (HUVECs) after IS or control medium treatment and identified 1293 genes that were affected in a IS-induced response. Gene enrichment analysis highlighted pathways involved in altered vascular formation and cell metabolism. We confirmed these transcriptome profiles at the functional level by demonstrating decreased viability and increased cell senescence in response to IS treatment. In line with the additional pathways highlighted by the transcriptome analysis, we further could demonstrate that IS exposure of HUVECs promoted tubule formation as shown by the increase in total tubule length in a 3D HUVECs/pericytes co-culture assay. Notably, the pro-angiogenic response of IS and increased ROS production were abolished when CYP1B1, one of the main target genes that was highly upregulated by IS, was silenced. This observation indicates IS-induced ROS in endothelial cells is CYP1B1-dependent. Taken together, our findings demonstrate that IS promotes angiogenesis and CYP1B1 is an important factor in IS-activated angiogenic response.


Subject(s)
Cytochrome P-450 CYP1B1/metabolism , Indican/pharmacology , Neovascularization, Physiologic/drug effects , Reactive Oxygen Species/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/enzymology , Endothelium, Vascular/metabolism , Gene Expression Profiling , Human Umbilical Vein Endothelial Cells , Humans , Sequence Analysis, RNA
14.
Biochem Pharmacol ; 159: 106-115, 2019 01.
Article in English | MEDLINE | ID: mdl-30452907

ABSTRACT

MicroRNAs (miRNAs) have recently received great attention for their regulatory roles in diverse cellular processes and for their contribution to several human pathologies. Modulation of miRNAs in vivo provides beneficial therapeutic strategies for the treatment of many diseases, as evidenced by various preclinical studies. However, specific issues regarding the in vivo use of miRNA inhibitors (antimiRs) such as organ-specific delivery, optimal dosing and formulation of the best chemistry to obtain efficient miRNA inhibition remain to be addressed. Here, we aimed at comparing the in vivo efficacy of different chemistry-based antimiR oligonucleotides to inhibit cardiac expression of miR-199b, a highly promising therapeutic target for the treatment of pressure overload-induced cardiac dysfunction. For this purpose, four different designs of oligonucleotides to inhibit miR-199b were initially developed. Systemic administration to wildtype mice on three consecutive days was followed by organ harvesting, seven days after the first injection, in order to quantify the dose-dependent changes in miR-199b expression levels. When comparing the efficiency of each inhibitor at the highest applied dose we observed that the antagomir was the only inhibitor inducing complete inhibition of miR-199b in the heart. LNA reduced expression in the heart by 50 percent while the Zen-AMO and F/MOE chemistries failed to repress miR-199b expression in the heart at any given dose, in vivo. Further optimization was achieved by subjecting the antagomir and LNA nucleotides to additional chemical modifications. Interestingly, antagomir modification by replacing the cholesterol moiety from the 3' to the 5' end of the molecule significantly improved the inhibitory capacity, as reflected by a 75 percent downregulation of miR-199b expression already at a concentration of 5 mg/kg/day. Similar results could be obtained with a LNA-RNA molecule but upon administration of 80 mg/kg/day. These findings show that, from all the chemistries tested by us, an antagomir carrying the cholesterol group at the 5' end was the most efficient inhibitor of miR-199b in the heart, in vivo. Moreover, our data also emphasize the importance of chemistry optimization and best dose range finding to achieve the greatest efficacy in miRNA inhibition in vivo.


Subject(s)
Antagomirs/chemistry , Antagomirs/pharmacology , MicroRNAs/genetics , Animals , Antagomirs/administration & dosage , Dose-Response Relationship, Drug , Female , Gene Expression Regulation/drug effects , Heart/drug effects , Mice, Inbred Strains , Oligonucleotides/chemistry
15.
Mol Ther ; 27(3): 584-599, 2019 03 06.
Article in English | MEDLINE | ID: mdl-30559069

ABSTRACT

Heart failure is preceded by ventricular remodeling, changes in left ventricular mass, and myocardial volume after alterations in loading conditions. Concentric hypertrophy arises after pressure overload, involves wall thickening, and forms a substrate for diastolic dysfunction. Eccentric hypertrophy develops in volume overload conditions and leads wall thinning, chamber dilation, and reduced ejection fraction. The molecular events underlying these distinct forms of cardiac remodeling are poorly understood. Here, we demonstrate that miR-148a expression changes dynamically in distinct subtypes of heart failure: while it is elevated in concentric hypertrophy, it decreased in dilated cardiomyopathy. In line, antagomir-mediated silencing of miR-148a caused wall thinning, chamber dilation, increased left ventricle volume, and reduced ejection fraction. Additionally, adeno-associated viral delivery of miR-148a protected the mouse heart from pressure-overload-induced systolic dysfunction by preventing the transition of concentric hypertrophic remodeling toward dilation. Mechanistically, miR-148a targets the cytokine co-receptor glycoprotein 130 (gp130) and connects cardiomyocyte responsiveness to extracellular cytokines by modulating the Stat3 signaling. These findings show the ability of miR-148a to prevent the transition of pressure-overload induced concentric hypertrophic remodeling toward eccentric hypertrophy and dilated cardiomyopathy and provide evidence for the existence of separate molecular programs inducing distinct forms of myocardial remodeling.


Subject(s)
Cardiomyopathies/metabolism , Heart Failure/metabolism , Heart Transplantation/methods , MicroRNAs/metabolism , Myocardium/metabolism , Animals , Cardiomyopathies/genetics , Cell Proliferation/physiology , Heart Failure/genetics , Humans , Mice , MicroRNAs/genetics , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Signal Transduction/physiology , Ventricular Remodeling/genetics , Ventricular Remodeling/physiology
16.
Am J Physiol Heart Circ Physiol ; 315(5): H1414-H1424, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30028196

ABSTRACT

Cardiovascular diseases account for ~50% of mortality in patients with chronic kidney disease (CKD). Fibroblast growth factor 23 (FGF23) is independently associated with endothelial dysfunction and cardiovascular mortality. We hypothesized that CKD impairs microvascular endothelial function and that this can be attributed to FGF23. Mice were subjected to partial nephrectomy (5/6Nx) or sham surgery. To evaluate the functional role of FGF23, non-CKD mice received FGF23 injections and CKD mice received FGF23-blocking antibodies after 5/6Nx surgery. To examine microvascular function, myocardial perfusion in vivo and vascular function of gracilis resistance arteries ex vivo were assessed in mice. 5/6Nx surgery blunted ex vivo vasodilator responses to acetylcholine, whereas responses to sodium nitroprusside or endothelin were normal. In vivo FGF23 injections in non-CKD mice mimicked this endothelial defect, and FGF23 antibodies in 5/6Nx mice prevented endothelial dysfunction. Stimulation of microvascular endothelial cells with FGF23 in vitro did not induce ERK phosphorylation. Increased plasma asymmetric dimethylarginine concentrations were increased by FGF23 and strongly correlated with endothelial dysfunction. Increased FGF23 concentration did not mimic impaired endothelial function in the myocardium of 5/6Nx mice. In conclusion, impaired peripheral endothelium-dependent vasodilatation in 5/6Nx mice is mediated by FGF23 and can be prevented by blocking FGF23. These data corroborate FGF23 as an important target to combat cardiovascular disease in CKD. NEW & NOTEWORTHY In the present study, we provide the first evidence that fibroblast growth factor 23 (FGF23) is a cause of peripheral endothelial dysfunction in a model of early chronic kidney disease (CKD) and that endothelial dysfunction in CKD can be prevented by blockade of FGF23. This pathological effect on endothelial cells was induced by long-term exposure of physiological levels of FGF23. Mechanistically, increased plasma asymmetric dimethylarginine concentrations were strongly associated with this endothelial dysfunction in CKD and were increased by FGF23.


Subject(s)
Fibroblast Growth Factors/metabolism , Gracilis Muscle/blood supply , Kidney/physiopathology , Microcirculation , Microvessels/metabolism , Renal Insufficiency, Chronic/metabolism , Vascular Resistance , Vasodilation , Animals , Arginine/analogs & derivatives , Arginine/blood , Cells, Cultured , Coronary Circulation , Coronary Vessels/metabolism , Coronary Vessels/physiopathology , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/pharmacology , Humans , Male , Mice, Inbred C57BL , Microcirculation/drug effects , Microvessels/drug effects , Microvessels/physiopathology , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/physiopathology , Signal Transduction/drug effects , Vascular Resistance/drug effects , Vasodilation/drug effects , Vasodilator Agents/pharmacology
17.
Noncoding RNA Res ; 2(1): 18-26, 2017 Mar.
Article in English | MEDLINE | ID: mdl-30159417

ABSTRACT

Myocardial infarction (MI), the globally leading cause of heart failure, morbidity and mortality, involves post-MI ventricular remodeling, a complex process including acute injury healing, scar formation and global changes in the surviving myocardium. The molecular mechanisms involved in adverse post-infarct left ventricular remodeling still remain poorly defined. Recently, microRNAs have been implicated in the development and progression of various cardiac diseases as crucial regulators of gene expression. We previously demonstrated that in a murine model of pressure overload, a model of heart failure secondary to aortic stenosis or chronic high blood pressure, elevated myocardial expression of miR-199b-5p is sufficient to activate calcineurin/NFAT signaling, leading to exaggerated cardiac pathological remodeling and dysfunction. Given the differences in left ventricular remodeling secondary to post-infarct healing and pressure overload, we evaluated miR-199b function in post-MI remodeling. We confirmed that the expression of miR-199b is elevated in the post-infarcted heart. Transgenic animals with cardiomyocyte-restricted overexpression of miR-199b-5p displayed exaggerated pathological remodeling after MI, reflected by severe systolic and diastolic dysfunction and fibrosis deposition. Conversely, therapeutic silencing of miR-199b-5p in MI-induced cardiac remodeling by using an antagomir to specifically inhibit endogenous miR-199b-5p in vivo, resulted in efficient suppression of cardiac miR-199b-5p expression and attenuated cardiac dysfunction and dilation following MI. Mechanistically, miR-199b-5p influenced the expression of three predicted target genes in post-infarcted hearts, dual specificity tyrosine-phosphorylation-regulated kinase 1A (Dyrk1a), the notch1 receptor and its ligand jagged1. In conclusion, here we provide evidence supporting that stress-induced miR-199b-5p participates in post-infarct remodeling by simultaneous regulation of distinct target genes.

18.
Noncoding RNA Res ; 2(1): 45-55, 2017 Mar.
Article in English | MEDLINE | ID: mdl-30159420

ABSTRACT

Heart failure is a complex syndrome involving various pathophysiological processes. An increasing body of evidence shows that the myocardial microvasculature is essential for the homeostasis state and that a decompensated heart is associated with microvascular dysfunction as a result of impaired endothelial angiogenic capacity. The intercellular communication between endothelial cells and cardiomyocytes through various signaling molecules, such as vascular endothelial growth factor, nitric oxide, and non-coding RNAs is an important determinant of cardiac microvascular function. Non-coding RNAs are transported from endothelial cells to cardiomyocytes, and vice versa, regulating microvascular properties and angiogenic processes in the heart. Small-exocytosed vesicles, called exosomes, which are secreted by both cell types, can mediate this intercellular communication. The purpose of this review is to highlight the contribution of the microvasculature to proper heart function maintenance by focusing on the interaction between cardiac endothelial cells and myocytes with a specific emphasis on non-coding RNAs (ncRNAs) in this form of cell-to-cell communication. Finally, the potential of ncRNAs as targets for angiogenesis therapy will also be discussed.

19.
J Mol Cell Cardiol ; 88: 145-54, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26436984

ABSTRACT

Nitric oxide (NO) produced by endothelial NO synthase (eNOS) exerts beneficial effects in a variety of cardiovascular disease states. Studies on the benefit of eNOS activity in pressure-overload cardiac hypertrophy and dysfunction produced by aortic stenosis are equivocal, which may be due to different expression levels of eNOS or different severities of pressure-overload. Consequently, we investigated the effects of eNOS-expression level on cardiac hypertrophy and dysfunction produced by mild or severe pressure-overload. To unravel the impact of eNOS on pressure-overload cardiac dysfunction we subjected eNOS deficient, wildtype and eNOS overexpressing transgenic (eNOS-Tg) mice to 8weeks of mild or severe transverse aortic constriction (TAC) and studied cardiac geometry and function at the whole organ and tissue level. In both mild and severe TAC, lack of eNOS ameliorated, whereas eNOS overexpression aggravated, TAC-induced cardiac remodeling and dysfunction. Moreover, the detrimental effects of eNOS in severe TAC were associated with aggravation of TAC-induced NOS-dependent oxidative stress and by further elevation of eNOS monomer levels, consistent with enhanced eNOS uncoupling. In the presence of TAC, scavenging of reactive oxygen species with N-acetylcysteine reduced eNOS S-glutathionylation, eNOS monomer and NOS-dependent superoxide levels in eNOS-Tg mice to wildtype levels. Accordingly, N-acetylcysteine improved cardiac function in eNOS-Tg but not in wildtype mice with TAC. In conclusion, independent of the severity of TAC, eNOS aggravates cardiac remodeling and dysfunction, which appears due to TAC-induced eNOS uncoupling and superoxide production.


Subject(s)
Cardiomegaly/enzymology , Cardiomegaly/genetics , Nitric Oxide Synthase Type III/genetics , Nitric Oxide/metabolism , Ventricular Remodeling , Acetylcysteine/pharmacology , Animals , Aorta/surgery , Cardiomegaly/etiology , Cardiomegaly/pathology , Constriction, Pathologic/complications , Constriction, Pathologic/surgery , Enzyme Activation , Female , Free Radical Scavengers/pharmacology , Gene Deletion , Gene Expression Regulation , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide Synthase Type III/metabolism , Oxidative Stress , Severity of Illness Index , Superoxides/antagonists & inhibitors , Superoxides/metabolism
20.
J Am Coll Cardiol ; 61(14): 1471-81, 2013 Apr 09.
Article in English | MEDLINE | ID: mdl-23500310

ABSTRACT

Oxidative stress greatly influences the pathogenesis of various cardiovascular disorders. Coronary interventions, including balloon angioplasty and coronary stent implantation, are associated with increased vascular levels of reactive oxygen species in conjunction with altered endothelial cell and smooth muscle cell function. These alterations potentially lead to restenosis, thrombosis, or endothelial dysfunction in the treated artery. Therefore, the understanding of the pathophysiological role of reactive oxygen species (ROS) generated during or after coronary interventions, or both, is essential to improve the success rate of these procedures. Superoxide O2(·-) anions, whether derived from uncoupled endothelial nitric oxide synthase, nicotinamide adenine dinucleotide phosphate oxidase, xanthine oxidase, or mitochondria, are among the most harmful ROS. O2(·-) can scavenge nitric oxide, modify proteins and nucleotides, and induce proinflammatory signaling, which may lead to greater ROS production. Current innovations in stent technologies, including biodegradable stents, nitric oxide donor-coated stents, and a new generation of drug-eluting stents, therefore address persistent oxidative stress and reduced nitric oxide bioavailability after percutaneous coronary interventions. This review discusses the molecular mechanisms of ROS generation after coronary interventions, the related pathological events-including restenosis, endothelial dysfunction, and stent thrombosis-and possible therapeutic ways forward.


Subject(s)
Coronary Restenosis/pathology , Oxidative Stress/physiology , Percutaneous Coronary Intervention/adverse effects , Percutaneous Coronary Intervention/methods , Reactive Oxygen Species/metabolism , Stents , Adult , Aged , Angioplasty, Balloon, Coronary/adverse effects , Angioplasty, Balloon, Coronary/methods , Coronary Restenosis/therapy , Coronary Stenosis/diagnostic imaging , Coronary Stenosis/mortality , Coronary Stenosis/therapy , Drug-Eluting Stents , Endothelium, Vascular/enzymology , Endothelium, Vascular/physiology , Female , Humans , Male , Middle Aged , Monitoring, Physiologic , Nitric Oxide Synthase Type III/metabolism , Postoperative Care/methods , Postoperative Complications/drug therapy , Postoperative Complications/metabolism , Postoperative Complications/pathology , Prognosis , Radiography , Randomized Controlled Trials as Topic , Risk Assessment , Survival Analysis , Treatment Outcome , Vasodilator Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...