Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters










Publication year range
1.
Cancers (Basel) ; 15(20)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37894405

ABSTRACT

Glioblastomas (GBs) are incurable brain tumors. The persistence of aggressive stem-like tumor cells after cytotoxic treatments compromises therapeutic efficacy, leading to GBM recurrence. Forcing the GBM cells to irreversibly abandon their aggressive stem-like phenotype may offer an alternative to conventional cytotoxic treatments. Here, we show that the RNA binding protein CELF2 is strongly expressed in mitotic and OLIG2-positive GBM cells, while it is downregulated in differentiated and non-mitotic cells by miR-199a-3p, exemplifying GBM intra-tumor heterogeneity. Using patient-derived cells and human GBM samples, we demonstrate that CELF2 plays a key role in maintaining the proliferative/OLIG2 cell phenotype with clonal and tumorigenic properties. Indeed, we show that CELF2 deficiency in patient-derived GSCs drastically reduced tumor growth in the brains of nude mice. We further show that CELF2 promotes TRIM28 and G9a expression, which drive a H3K9me3 epigenetic profile responsible for the silencing of the SOX3 gene. Thus, CELF2, which is positively correlated with OLIG2 and Ki67 expression in human GBM samples, is inversely correlated with SOX3 and miR-199a-3p. Accordingly, the invalidation of SOX3 in CELF2-deficient patient-derived cells rescued proliferation and OLIG2 expression. Finally, patients expressing SOX3 above the median level of expression tend to have a longer life expectancy. CELF2 is therefore a crucial target for the malignant potential of GBM and warrants attention when developing novel anticancer strategies.

3.
Trends Cancer ; 9(1): 9-27, 2023 01.
Article in English | MEDLINE | ID: mdl-36400694

ABSTRACT

Glioblastoma (GBM) is the most deadly type of malignant brain tumor, despite extensive molecular analyses of GBM cells. In recent years, the tumor microenvironment (TME) has been recognized as an important player and therapeutic target in GBM. However, there is a need for a full and integrated understanding of the different cellular and molecular components involved in the GBM TME and their interactions for the development of more efficient therapies. In this review, we provide a comprehensive report of the GBM TME, which assembles the contributions of physicians and translational researchers working on brain tumor pathology and therapy in France. We propose a holistic view of the subject by delineating the specific features of the GBM TME at the cellular, molecular, and therapeutic levels.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/therapy , Glioblastoma/drug therapy , Tumor Microenvironment/genetics , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Brain Neoplasms/pathology
4.
Cell Death Dis ; 13(10): 913, 2022 10 30.
Article in English | MEDLINE | ID: mdl-36310164

ABSTRACT

Cell motility is critical for tumor malignancy. Metabolism being an obligatory step in shaping cell behavior, we looked for metabolic weaknesses shared by motile cells across the diverse genetic contexts of patients' glioblastoma. Computational analyses of single-cell transcriptomes from thirty patients' tumors isolated cells with high motile potential and highlighted their metabolic specificities. These cells were characterized by enhanced mitochondrial load and oxidative stress coupled with mobilization of the cysteine metabolism enzyme 3-Mercaptopyruvate sulfurtransferase (MPST). Functional assays with patients' tumor-derived cells and -tissue organoids, and genetic and pharmacological manipulations confirmed that the cells depend on enhanced ROS production and MPST activity for their motility. MPST action involved protection of protein cysteine residues from damaging hyperoxidation. Its knockdown translated in reduced tumor burden, and a robust increase in mice survival. Starting from cell-by-cell analyses of the patients' tumors, our work unravels metabolic dependencies of cell malignancy maintained across heterogeneous genomic landscapes.


Subject(s)
Glioblastoma , Mice , Animals , Glioblastoma/genetics , Cysteine/metabolism , Sulfurtransferases/genetics , Sulfurtransferases/metabolism , Oxidative Stress , Cell Movement/genetics
5.
Sci Rep ; 10(1): 18742, 2020 10 30.
Article in English | MEDLINE | ID: mdl-33128011

ABSTRACT

Human glioblastoma (GBM) is the most common primary malignant brain tumor. A minor subpopulation of cancer cells, known as glioma stem-like cells (GSCs), are thought to play a major role in tumor relapse due to their stem cell-like properties, their high resistance to conventional treatments and their high invasion capacity. We show that ionizing radiation specifically enhances the motility and invasiveness of human GSCs through the stabilization and nuclear accumulation of the hypoxia-inducible factor 1α (HIF1α), which in turn transcriptionally activates the Junction-mediating and regulatory protein (JMY). Finally, JMY accumulates in the cytoplasm where it stimulates GSC migration via its actin nucleation-promoting activity. Targeting JMY could thus open the way to the development of new therapeutic strategies to improve the efficacy of radiotherapy and prevent glioma recurrence.


Subject(s)
Glioblastoma/metabolism , Glioblastoma/pathology , Glioma/metabolism , Glioma/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Nuclear Proteins/metabolism , Trans-Activators/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Movement/radiation effects , Cell Nucleus/metabolism , Cell Nucleus/radiation effects , Cytoplasm/metabolism , Cytoplasm/radiation effects , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Nuclear Proteins/genetics , Radiation, Ionizing , Signal Transduction/genetics , Signal Transduction/radiation effects , Trans-Activators/genetics
6.
Nat Commun ; 11(1): 4855, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32978390

ABSTRACT

The atypical chemokine receptor 3 (ACKR3) plays a pivotal role in directing the migration of various cellular populations and its over-expression in tumors promotes cell proliferation and invasiveness. The intracellular signaling pathways transducing ACKR3-dependent effects remain poorly characterized, an issue we addressed by identifying the interactome of ACKR3. Here, we report that recombinant ACKR3 expressed in HEK293T cells recruits the gap junction protein Connexin 43 (Cx43). Cx43 and ACKR3 are co-expressed in mouse brain astrocytes and human glioblastoma cells and form a complex in embryonic mouse brain. Functional in vitro studies show enhanced ACKR3 interaction with Cx43 upon ACKR3 agonist stimulation. Furthermore, ACKR3 activation promotes ß-arrestin2- and dynamin-dependent Cx43 internalization to inhibit gap junctional intercellular communication in primary astrocytes. These results demonstrate a functional link between ACKR3 and gap junctions that might be of pathophysiological relevance.


Subject(s)
Astrocytes/metabolism , Cell Communication/physiology , Connexin 43/metabolism , Gap Junctions/pathology , Receptors, CXCR/metabolism , Animals , Cell Proliferation , Connexin 43/drug effects , Connexins/metabolism , Gene Knock-In Techniques , Glioblastoma/metabolism , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Protein Interaction Domains and Motifs , Receptors, CXCR/agonists , Receptors, CXCR/genetics , Signal Transduction/physiology
7.
Cancer Res ; 80(16): 3236-3250, 2020 08 15.
Article in English | MEDLINE | ID: mdl-32366479

ABSTRACT

There is great interest in understanding how the cancer stem cell population may be maintained in solid tumors. Here, we show that tumor cells exhibiting stem-like properties and expression of pluripotency markers NANOG and OCT4 can arise from original differentiated tumor cells freshly isolated from human glioblastomas (GBM) and that have never known any serum culture conditions. Induction of EGR1 by EGFR/ERK signaling promoted cell conversion from a less aggressive, more differentiated cellular state to a self-renewing and strongly tumorigenic state, expressing NANOG and OCT4. Expression of these pluripotency markers occurred before the cells re-entered the cell cycle, demonstrating their capacity to change and dedifferentiate without any cell divisions. In differentiated GBM cells, ERK-mediated repression of miR-199a-3p induced EGR1 protein expression and triggered dedifferentiation. Overall, this signaling pathway constitutes an ERK-mediated "toggle switch" that promotes pluripotency marker expression and stem-like features in GBM cells. SIGNIFICANCE: This study defines an ERK-mediated molecular mechanism of dedifferentiation of GBM cells into a stem-like state, expressing markers of pluripotency.See related commentary by Koncar and Agnihotri, p. 3195.


Subject(s)
Glioblastoma , MicroRNAs , Cell Dedifferentiation , Cell Differentiation , Early Growth Response Protein 1 , Glioblastoma/genetics , Humans , MicroRNAs/genetics , Nanog Homeobox Protein/genetics , Neoplastic Stem Cells
8.
Brain Behav Immun ; 85: 170-185, 2020 03.
Article in English | MEDLINE | ID: mdl-31059805

ABSTRACT

Microglia cells are the immune effector in the Central Nervous System (CNS). However, studies have showed that they contribute more to glioma progression than to its elimination. Rutin and its aglycone quercetin are flavonoids present in many fruits as well as plants and have been demonstrated to bear anti-inflammatory, antioxidant and antitumor properties also to human glioblastoma cell lines. Previous studies also demonstrated that rutin, isolated from the Brazilian plant Dimorphandra mollis Bent., presents immunomodulatory effect on astrocytes and microglia. In this study, we investigate the antitumor and immunomodulatory properties of rutin and its aglycone quercetin on the viability of glioma cells alone and under direct and indirect interaction with microglia. Flavonoid treatment of rat C6 glioma cells induced inhibition of proliferation and migration, and also induced microglia chemotaxis that was associated to the up regulation of tumor necrosis factor (TNF) and the down regulation of Interleukin 10 (IL-10) at protein and mRNA expression levels, regulation of mRNA expression for chemokines CCL2, CCL5 and CX3CL1, and Heparin Binding Growth Factor (HDGF), Insulin-like growth factor (IGF) and Glial cell-derived neurotrophic factor (GDNF) growth factors. Treatment of human U251 and TG1 glioblastoma cells with both flavonoids also modulated negatively the expression of mRNA for IL-6 and IL-10 and positively the expression of mRNA for TNF characterizing changes to the immune regulatory profile. Treatment of microglia and C6 cells either in co-cultures or during indirect interaction, via conditioned media from glioma cells treated with flavonoids or via conditioned media from microglia treated with flavonoids reduced proliferation and migration of glioma cells. It also directed microglia towards an inflammatory profile with increased expression of mRNA for IL-1ß, IL-6, IL-18 and decreased expression of mRNA for nitric oxide synthase 2 (NOS2) and prostaglandin-endoperoxide synthase 2 (PTGS2), arginase and transforming growth factor beta (TGF-ß), as well as Insulin-like growth factor (IGF). Treatment of U251 cells with flavonoids also reduced tumorigenesis when the cells were xenotransplanted in rat brains, and directed microglia and also astrocytes in the microenvironment of tumor cell implantation as well as in the brain parenchyma to a not favorable molecular inflammatory profile to the glioma growth, as observed in cultures. Together these results demonstrate that the flavonoid rutin and its aglycone quercetin present antiglioma effects related to the property of modulating the microglial inflammatory profile and may be considered for molecular and preclinical studies as adjuvant molecules for treatment of gliomas.


Subject(s)
Microglia , Rutin , Animals , Cells, Cultured , Flavonoids , Microglia/metabolism , Nitric Oxide Synthase Type II/metabolism , Quercetin/pharmacology , Rats , Rutin/pharmacology
9.
Acta Neuropathol Commun ; 7(1): 155, 2019 10 16.
Article in English | MEDLINE | ID: mdl-31619292

ABSTRACT

Glioblastoma cell ability to adapt their functioning to microenvironment changes is a source of the extensive intra-tumor heterogeneity characteristic of this devastating malignant brain tumor. A systemic view of the metabolic pathways underlying glioblastoma cell functioning states is lacking. We analyzed public single cell RNA-sequencing data from glioblastoma surgical resections, which offer the closest available view of tumor cell heterogeneity as encountered at the time of patients' diagnosis. Unsupervised analyses revealed that information dispersed throughout the cell transcript repertoires encoded the identity of each tumor and masked information related to cell functioning states. Data reduction based on an experimentally-defined signature of transcription factors overcame this hurdle. It allowed cell grouping according to their tumorigenic potential, regardless of their tumor of origin. The approach relevance was validated using independent datasets of glioblastoma cell and tissue transcriptomes, patient-derived cell lines and orthotopic xenografts. Overexpression of genes coding for amino acid and lipid metabolism enzymes involved in anti-oxidative, energetic and cell membrane processes characterized cells with high tumorigenic potential. Modeling of their expression network highlighted the very long chain polyunsaturated fatty acid synthesis pathway at the core of the network. Expression of its most downstream enzymatic component, ELOVL2, was associated with worsened patient survival, and required for cell tumorigenic properties in vivo. Our results demonstrate the power of signature-driven analyses of single cell transcriptomes to obtain an integrated view of metabolic pathways at play within the heterogeneous cell landscape of patient tumors.


Subject(s)
Brain Neoplasms/metabolism , Glioblastoma/metabolism , Amino Acids/metabolism , Cluster Analysis , Gene Expression Regulation, Neoplastic , Humans , Lipid Metabolism , Single-Cell Analysis
10.
Nat Commun ; 10(1): 2235, 2019 05 28.
Article in English | MEDLINE | ID: mdl-31138805

ABSTRACT

Pediatric high-grade glioma (pHGG) and diffuse intrinsic pontine gliomas (DIPGs) are aggressive pediatric brain tumors in desperate need of a curative treatment. Oncolytic virotherapy is emerging as a solid therapeutic approach. Delta-24-RGD is a replication competent adenovirus engineered to replicate in tumor cells with an aberrant RB pathway. This virus has proven to be safe and effective in adult gliomas. Here we report that the administration of Delta-24-RGD is safe in mice and results in a significant increase in survival in immunodeficient and immunocompetent models of pHGG and DIPGs. Our results show that the Delta-24-RGD antiglioma effect is mediated by the oncolytic effect and the immune response elicited against the tumor. Altogether, our data highlight the potential of this virus as treatment for patients with these tumors. Of clinical significance, these data have led to the start of a phase I/II clinical trial at our institution for newly diagnosed DIPG (NCT03178032).


Subject(s)
Adenoviridae , Brain Stem Neoplasms/therapy , Glioma/therapy , Oncolytic Virotherapy/methods , Oncolytic Viruses , Animals , Brain Neoplasms/pathology , Brain Neoplasms/therapy , Brain Stem Neoplasms/pathology , Cell Line, Tumor , Cell Survival , Computer Simulation , Disease Models, Animal , Glioma/pathology , Humans , In Vitro Techniques , Mice , Neoplasm Grading , Xenograft Model Antitumor Assays
11.
Oncotarget ; 10(7): 773-784, 2019 Jan 22.
Article in English | MEDLINE | ID: mdl-30774779

ABSTRACT

Some cancer cells elongate their telomeres through the ALT (alternative lengthening of telomeres) pathway, which is based on homologous recombination for the addition of telomere repeats without telomerase activity. General control non-derepressible 5 (GCN5) and P300/CBP-associated factor (PCAF), two homologous lysine acetyltransferases, exert opposite effects on the ALT pathway, inhibiting or favoring it respectively. Here we show that ALT cells are particularly sensitive to the inhibition of acetyltransferases activities using Anacardic Acid (AA). AA treatment recapitulates the effect of PCAF knockdown on several ALT features, suggesting that AA decreased the ALT mechanism through the inhibition of lysine transferase activity of PCAF, but not that of GCN5. Furthermore, AA specifically sensitizes human ALT cells to radiation as compared to telomerase-positive cells suggesting that the inhibition of lysine acetyltransferases activity may be used to increase the radiotherapy efficiency against ALT cancers.

12.
Oncotarget ; 9(43): 27197-27219, 2018 Jun 05.
Article in English | MEDLINE | ID: mdl-29930759

ABSTRACT

Glioblastoma is a highly heterogeneous brain tumor. The presence of cancer cells with stem-like and tumor initiation/propagation properties contributes to poor prognosis. Glioblastoma cancer stem-like cells (GSC) reside in hypoxic and acidic niches favoring cell quiescence and drug resistance. A high throughput screening recently identified the laxative Bisacodyl as a cytotoxic compound targeting quiescent GSC placed in acidic microenvironments. Bisacodyl activity requires its hydrolysis into DDPM, its pharmacologically active derivative. Bisacodyl was further shown to induce tumor shrinking and increase survival in in vivo glioblastoma models. Here we explored the cellular mechanism underlying Bisacodyl cytotoxic effects using quiescent GSC in an acidic microenvironment and GSC-derived 3D macro-spheres. These spheres mimic many aspects of glioblastoma tumors in vivo, including hypoxic/acidic areas containing quiescent cells. Phosphokinase protein arrays combined with pharmacological and genetic modulation of signaling pathways point to the WNK1 serine/threonine protein kinase as a mediator of Bisacodyl cytotoxic effect in both cell models. WNK1 partners including the Akt and SGK1 protein kinases and NBC-family Na+/HCO3- cotransporters were shown to participate in the compound's effect on GSC. Overall, our findings uncover novel potential therapeutic targets for combatting glioblastoma which is presently an incurable disease.

13.
Sci Rep ; 8(1): 3664, 2018 02 26.
Article in English | MEDLINE | ID: mdl-29483558

ABSTRACT

Despite continuous improvements in treatment of glioblastoma, tumor recurrence and therapy resistance still occur in a high proportion of patients. One underlying reason for this radioresistance might be the presence of glioblastoma cancer stem cells (GSCs), which feature high DNA repair capability. PARP protein plays an important cellular role by detecting the presence of damaged DNA and then activating signaling pathways that promote appropriate cellular responses. Thus, PARP inhibitors (PARPi) have recently emerged as potential radiosensitizing agents. In this study, we investigated the preclinical efficacy of talazoparib, a new PARPi, in association with low and high linear energy transfer (LET) irradiation in two GSC cell lines. Reduction of GSC fraction, impact on cell proliferation, and cell cycle arrest were evaluated for each condition. All combinations were compared with a reference schedule: photonic irradiation combined with temozolomide. The use of PARPi combined with photon beam and even more carbon beam irradiation drastically reduced the GSC frequency of GBM cell lines in vitro. Furthermore, talazoparib combined with irradiation induced a marked and prolonged G2/M block, and decreased proliferation. These results show that talazoparib is a new candidate that effects radiosensitization in radioresistant GSCs, and its combination with high LET irradiation, is promising.


Subject(s)
Phthalazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Glioblastoma/metabolism , Humans , Linear Energy Transfer/drug effects , Linear Energy Transfer/physiology , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Radiation-Sensitizing Agents , Signal Transduction/drug effects
14.
Acta Neuropathol ; 135(2): 267-283, 2018 02.
Article in English | MEDLINE | ID: mdl-29149419

ABSTRACT

Although a growing body of evidence indicates that phenotypic plasticity exhibited by glioblastoma cells plays a central role in tumor development and post-therapy recurrence, the master drivers of their aggressiveness remain elusive. Here we mapped the changes in active (H3K4me3) and repressive (H3K27me3) histone modifications accompanying the repression of glioblastoma stem-like cells tumorigenicity. Genes with changing histone marks delineated a network of transcription factors related to cancerous behavior, stem state, and neural development, highlighting a previously unsuspected association between repression of ARNT2 and loss of cell tumorigenicity. Immunohistochemistry confirmed ARNT2 expression in cell sub-populations within proliferative zones of patients' glioblastoma. Decreased ARNT2 expression was consistently observed in non-tumorigenic glioblastoma cells, compared to tumorigenic cells. Moreover, ARNT2 expression correlated with a tumorigenic molecular signature at both the tissue level within the tumor core and at the single cell level in the patients' tumors. We found that ARNT2 knockdown decreased the expression of SOX9, POU3F2 and OLIG2, transcription factors implicated in glioblastoma cell tumorigenicity, and repressed glioblastoma stem-like cell tumorigenic properties in vivo. Our results reveal ARNT2 as a pivotal component of the glioblastoma cell tumorigenic signature, located at a node of a transcription factor network controlling glioblastoma cell aggressiveness.


Subject(s)
Aryl Hydrocarbon Receptor Nuclear Translocator/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Brain Neoplasms/metabolism , Chromatin/metabolism , Glioblastoma/metabolism , Aged , Animals , Aryl Hydrocarbon Receptor Nuclear Translocator/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cells, Cultured , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Glioblastoma/genetics , Glioblastoma/pathology , Histone Code , Homeodomain Proteins/metabolism , Humans , Mice, Nude , Middle Aged , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Neoplasm Invasiveness/physiopathology , Neoplasm Transplantation , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Oligodendrocyte Transcription Factor 2/metabolism , POU Domain Factors/metabolism , SOX9 Transcription Factor/metabolism
15.
Oncotarget ; 8(16): 26269-26280, 2017 Apr 18.
Article in English | MEDLINE | ID: mdl-28412741

ABSTRACT

Cancer cells can use a telomerase-independent mechanism, known as alternative lengthening of telomeres (ALT), to elongate their telomeres. General control non-derepressible 5 (GCN5) and P300/CBP-associated factor (PCAF) are two homologous acetyltransferases that are mutually exclusive subunits in SAGA-like complexes. Here, we reveal that down regulation of GCN5 and PCAF had differential effects on some phenotypic characteristics of ALT cells. Our results suggest that GCN5 is present at telomeres and opposes telomere recombination, in contrast to PCAF that may indirectly favour them in ALT cells.


Subject(s)
Genetic Association Studies , Telomere Homeostasis/genetics , Telomere/genetics , p300-CBP Transcription Factors/genetics , Cell Cycle/genetics , Cell Line, Tumor , Cell Proliferation , Gene Expression , Gene Knockdown Techniques , Genomic Instability , Humans , Intranuclear Inclusion Bodies/genetics , Intranuclear Inclusion Bodies/metabolism , Leukemia, Promyelocytic, Acute/genetics , Leukemia, Promyelocytic, Acute/metabolism , Leukemia, Promyelocytic, Acute/pathology , Protein Binding , Sister Chromatid Exchange , Translocation, Genetic
16.
Cell Death Dis ; 8(3): e2713, 2017 03 30.
Article in English | MEDLINE | ID: mdl-28358371

ABSTRACT

Glioblastomas are incurable primary brain tumors that affect patients of all ages. The aggressiveness of this cancer has been attributed in part to the persistence of treatment-resistant glioblastoma stem-like cells. We have previously discovered the tumor-suppressor properties of the microRNA cluster miR-302-367, representing a potential treatment for glioblastoma. Here, we attempted to develop a cell-based therapy by taking advantage of the capability of glioma cells to secrete exosomes that enclose small RNA molecules. We engineered primary glioma cells to stably express the miR-302-367. Remarkably, these cells altered, in a paracrine-dependent manner, the expression of stemness markers, the proliferation and the tumorigenicity of neighboring glioblastoma cells. Further characterization of the secretome derived from miR-302-367 expressing cells showed that a large amount of miR-302-367 was enclosed in exosomes, which were internalized by the neighboring glioblastoma cells. This miR-302-367 cell-to-cell transfer resulted in the inhibition of its targets such as CXCR4/SDF1, SHH, cyclin D, cyclin A and E2F1. Orthotopic xenograft of miR-302-367-expressing cells together with glioblastoma stem-like cells efficiently altered the tumor development in mice brain.


Subject(s)
Gene Expression Regulation, Neoplastic , Glioblastoma/metabolism , MicroRNAs/biosynthesis , Multigene Family , Neoplasm Proteins/biosynthesis , RNA, Neoplasm/biosynthesis , Animals , Cell- and Tissue-Based Therapy , Glioblastoma/genetics , Glioblastoma/therapy , Humans , Mice , MicroRNAs/genetics , Neoplasm Proteins/genetics , RNA, Neoplasm/genetics
17.
PLoS One ; 12(1): e0170501, 2017.
Article in English | MEDLINE | ID: mdl-28107439

ABSTRACT

OBJECTIVE: In this work we set to develop and to validate a new in vivo frameless orthotopic Diffuse Intrinsic Pontine Glioma (DIPG) model based in the implantation of a guide-screw system. METHODS: It consisted of a guide-screw also called bolt, a Hamilton syringe with a 26-gauge needle and an insulin-like 15-gauge needle. The guide screw is 2.6 mm in length and harbors a 0.5 mm central hole which accepts the needle of the Hamilton syringe avoiding a theoretical displacement during insertion. The guide-screw is fixed on the mouse skull according to the coordinates: 1mm right to and 0.8 mm posterior to lambda. To reach the pons the Hamilton syringe is adjusted to a 6.5 mm depth using a cuff that serves as a stopper. This system allows delivering not only cells but also any kind of intratumoral chemotherapy, antibodies or gene/viral therapies. RESULTS: The guide-screw was successfully implanted in 10 immunodeficient mice and the animals were inoculated with DIPG human cell lines during the same anesthetic period. All the mice developed severe neurologic symptoms and had a median overall survival of 95 days ranging the time of death from 81 to 116 days. Histopathological analysis confirmed tumor into the pons in all animals confirming the validity of this model. CONCLUSION: Here we presented a reproducible and frameless DIPG model that allows for rapid evaluation of tumorigenicity and efficacy of chemotherapeutic or gene therapy products delivered intratumorally to the pons.


Subject(s)
Brain Stem Neoplasms/etiology , Disease Models, Animal , Glioma/etiology , Neoplasm Transplantation/methods , Animals , Brain Stem , Cell Line, Tumor , Mice , Mice, Nude , Needles , Neoplasms, Experimental
18.
Biochim Biophys Acta Mol Cell Res ; 1864(6): 1018-1027, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28109792

ABSTRACT

Glioblastoma is the most common malignant brain tumor. The heterogeneity at the cellular level, metabolic specificities and plasticity of the cancer cells are a challenge for glioblastoma treatment. Identification of cancer cells endowed with stem properties and able to propagate the tumor in animal xenografts has opened a new paradigm in cancer therapy. Thus, to increase efficacy and avoid tumor recurrence, therapies need to target not only the differentiated cells of the tumor mass, but also the cancer stem-like cells. These therapies need to be effective on cells present in the hypoxic, slightly acidic microenvironment found within tumors. Such a microenvironment is known to favor more aggressive undifferentiated phenotypes and a slow-growing "quiescent state" that preserves the cells from chemotherapeutic agents, which mostly target proliferating cells. Based on these considerations, we performed a differential screening of the Prestwick Chemical Library of approved drugs on both proliferating and quiescent glioblastoma stem-like cells and identified bisacodyl as a cytotoxic agent with selectivity for quiescent glioblastoma stem-like cells. In the present study we further characterize bisacodyl activity and show its efficacy in vitro on clonal macro-tumorospheres, as well as in vivo in glioblastoma mouse models. Our work further suggests that bisacodyl acts through inhibition of Ca2+ release from the InsP3 receptors.


Subject(s)
Bisacodyl/pharmacology , Brain Neoplasms/pathology , Calcium Signaling , Glioblastoma/pathology , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Neoplastic Stem Cells/pathology , Brain Neoplasms/metabolism , Cell Line, Tumor , Glioblastoma/metabolism , Humans , Neoplastic Stem Cells/metabolism
19.
Acta Neuropathol ; 133(4): 645-660, 2017 04.
Article in English | MEDLINE | ID: mdl-28032215

ABSTRACT

Cell populations with differing proliferative, stem-like and tumorigenic states co-exist in most tumors and especially malignant gliomas. Whether metabolic variations can drive this heterogeneity by controlling dynamic changes in cell states is unknown. Metabolite profiling of human adult glioblastoma stem-like cells upon loss of their tumorigenicity revealed a switch in the catabolism of the GABA neurotransmitter toward enhanced production and secretion of its by-product GHB (4-hydroxybutyrate). This switch was driven by succinic semialdehyde dehydrogenase (SSADH) downregulation. Enhancing GHB levels via SSADH downregulation or GHB supplementation triggered cell conversion into a less aggressive phenotypic state. GHB affected adult glioblastoma cells with varying molecular profiles, along with cells from pediatric pontine gliomas. In all cell types, GHB acted by inhibiting α-ketoglutarate-dependent Ten-eleven Translocations (TET) activity, resulting in decreased levels of the 5-hydroxymethylcytosine epigenetic mark. In patients, low SSADH expression was correlated with high GHB/α-ketoglutarate ratios, and distinguished weakly proliferative/differentiated glioblastoma territories from proliferative/non-differentiated territories. Our findings support an active participation of metabolic variations in the genesis of tumor heterogeneity.


Subject(s)
Brain Neoplasms/metabolism , Carcinogenesis/metabolism , Glioma/metabolism , Hydroxybutyrates/metabolism , Neoplastic Stem Cells/metabolism , gamma-Aminobutyric Acid/metabolism , Aged , Animals , Brain/metabolism , Brain/pathology , Brain/surgery , Brain Neoplasms/pathology , Brain Neoplasms/surgery , Carcinogenesis/pathology , Cell Death/physiology , Cell Proliferation/physiology , Child , Child, Preschool , Female , Glioma/pathology , Glioma/surgery , Humans , Male , Mice, Nude , Middle Aged , Neoplasm Transplantation , Neoplastic Stem Cells/pathology , Succinate-Semialdehyde Dehydrogenase/metabolism
20.
EMBO Mol Med ; 8(5): 511-26, 2016 05.
Article in English | MEDLINE | ID: mdl-27138566

ABSTRACT

A variety of drugs targeting monoamine receptors are routinely used in human pharmacology. We assessed the effect of these drugs on the viability of tumor-initiating cells isolated from patients with glioblastoma. Among the drugs targeting monoamine receptors, we identified prazosin, an α1- and α2B-adrenergic receptor antagonist, as the most potent inducer of patient-derived glioblastoma-initiating cell death. Prazosin triggered apoptosis of glioblastoma-initiating cells and of their differentiated progeny, inhibited glioblastoma growth in orthotopic xenografts of patient-derived glioblastoma-initiating cells, and increased survival of glioblastoma-bearing mice. We found that prazosin acted in glioblastoma-initiating cells independently from adrenergic receptors. Its off-target activity occurred via a PKCδ-dependent inhibition of the AKT pathway, which resulted in caspase-3 activation. Blockade of PKCδ activation prevented all molecular changes observed in prazosin-treated glioblastoma-initiating cells, as well as prazosin-induced apoptosis. Based on these data, we conclude that prazosin, an FDA-approved drug for the control of hypertension, inhibits glioblastoma growth through a PKCδ-dependent mechanism. These findings open up promising prospects for the use of prazosin as an adjuvant therapy for glioblastoma patients.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Repositioning , Glioblastoma/drug therapy , Oncogene Protein v-akt/metabolism , Prazosin/pharmacology , Protein Kinase C-delta/metabolism , Signal Transduction , Animals , Antihypertensive Agents/pharmacology , Apoptosis , Cell Survival/drug effects , Disease Models, Animal , Heterografts , Humans , Mice , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...