Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Public Health ; 10: 1063769, 2022.
Article in English | MEDLINE | ID: mdl-36466521

ABSTRACT

In this article we present results of our follow-up studies of samples of watch glass obtained and examined within a framework of international intercomparison dosimetry project RENEB ILC 2021. We present three methods of dose reconstruction based on EPR measurements of these samples: calibration method (CM), added dose method (ADM) and added dose&heating method (ADHM). The study showed that the three methods of dose reconstruction gave reliable and similar results in 0.5-6.0 Gy dose range, with accuracy better than 10%. The ADHM is the only one applicable in a real scenario, when sample-specific background spectrum is not available; therefore, a positive verification of this method is important for future use of EPR dosimetry in glass in potential radiation accidents.


Subject(s)
Film Dosimetry , Retrospective Studies
2.
Radiat Environ Biophys ; 61(2): 179-203, 2022 05.
Article in English | MEDLINE | ID: mdl-35306595

ABSTRACT

Electron Paramagnetic Resonance (EPR) spectroscopy enables detection of paramagnetic centers generated in solids by ionising radiation. In the last years, the ubiquity of glass in personal utility items increased significance of fortuities retrospective dosimetry based on EPR in glass parts of mobile phones and watches. Despite of fading of the signals and their susceptibility to light, it enables dosimetry at medical triage level of 1-2 Gy. In this article information relevant for assessment of applicability and planning of the EPR dosimetry is presented-particularly at dose levels typical for radiation accidents. Reported data on fading of the radiation-induced spectral components are presented and compared. Effects of light on background spectra and on the dosimetric signals are also presented. It is concluded that when properly accounting for the fading and for the obscuring effects of light, the EPR dosimetry in glasses from mobile phones and watches can be used in dose assessment after radiation accidents.


Subject(s)
Radioactive Hazard Release , Radiometry , Electron Spin Resonance Spectroscopy/methods , Glass/chemistry , Radiometry/methods , Retrospective Studies
3.
Radiat Environ Biophys ; 59(3): 539-552, 2020 08.
Article in English | MEDLINE | ID: mdl-32564131

ABSTRACT

Electron paramagnetic resonance (EPR) signals generated by ionizing radiation in touch-screen glasses have been reported as useful for personal dosimetry in people accidently exposed to ionizing radiation. This article describes the effect of light exposure on EPR spectra of various glasses obtained from mobile phones. This effect can lead to significant inaccuracy of the radiation doses reconstructed by EPR. The EPR signals from samples unexposed and exposed to X-rays and/or to natural and artificial light were numerically separated into three model spectra: those due to background (BG), radiation-induced signal (RIS), and light-induced signal (LIS). Although prolonged exposures of mobile phones to UV light are rather implausible, the article indicates errors underestimating the actual radiation doses in dose reconstruction in glasses exposed to UV light even for low fluences equivalent to several minutes of sunshine, if one neglects the effects of light in applied dosimetric procedures. About 5 min of exposure to sunlight or to light from common UV lamps reduced the intensity of the dosimetric spectral components by 20-60% as compared to non-illuminated samples. This effect strongly limits the achievable accuracy of retrospective dosimetry using EPR in glasses from mobile phones, unless their exposure to light containing a UV component can be excluded or the light-induced reduction in intensity of the RIS can be quantitatively estimated. A method for determination of a correction factor accounting for the perturbing light effects is proposed on basis of the determined relation between the dosimetric signal and intensity of the light-induced signal.


Subject(s)
Cell Phone , Glass/radiation effects , Sunlight , Ultraviolet Rays , Electron Spin Resonance Spectroscopy , X-Rays
4.
Radiat Environ Biophys ; 58(4): 493-500, 2019 11.
Article in English | MEDLINE | ID: mdl-31263953

ABSTRACT

In this study, samples of smart phone touch screen glass sheets and tempered glass screen protectors were examined with respect to their potential application in the dosimetry of ionizing radiation. The glass samples were obtained from various phones with different types of glass. Electron paramagnetic resonance (EPR) spectra of the radiation-induced signals (RIS) are presented and their dose dependence within a dose range of 0-20 Gy. Despite the observed fading with time of the dosimetric components of the signal, the remaining RIS turned out to be strong enough for a reliable dosimetry even 18 month after irradiation. The study also shows that crushing of the glass sheets and water treatment of the samples have no effect on the background and dosimetric EPR signals.


Subject(s)
Cell Phone , Electron Spin Resonance Spectroscopy , Glass/chemistry , Materials Testing , Radiometry
5.
Radiat Environ Biophys ; 58(2): 287-293, 2019 05.
Article in English | MEDLINE | ID: mdl-30740616

ABSTRACT

The effects of illumination of nail clippings by direct sunlight, UV lamps and fluorescent bulbs on native and radiation-induced electron paramagnetic resonance (EPR) signals in nails are presented. It is shown that a few minutes of exposure of the nail clippings to light including a UV component (sunlight and UV lamps) generates a strong EPR signal similar to the other EPR signals observable in nails: native background (BKG), mechanically induced (MIS) or radiation-induced (RIS). This effect was observed in clippings exposed and unexposed to ionizing radiation prior to the light illuminations. An exposure of the clippings to fluorescent light without a UV component generated, within the examined range of the light fluences (up to 240 kJ/m2), an EPR signal with considerably lower yield than UV light. The light-induced signal (LIS) decayed after 10 min of water treatment of the samples. In contrast, it was still observable 3 months after illumination in samples stored in air at room temperature, and 3 weeks in frozen samples, respectively. It is concluded that the LIS can considerably affect assessment of the dosimetric RIS components in irradiated nails, and of the background signals in unirradiated nails, thus contributing to errors in EPR dosimetry in nails.


Subject(s)
Light , Nails/radiation effects , Electron Spin Resonance Spectroscopy , Female , Humans , Male , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...