Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Biol ; 19(3): 669-686, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38486495

ABSTRACT

The understanding of protein-protein interaction mechanisms is key to the atomistic description of cell signaling pathways and for the development of new drugs. In this context, the mechanism of intrinsically disordered proteins folding upon binding has attracted attention. The VirB9 C-terminal domain (VirB9Ct) and the VirB7 N-terminal motif (VirB7Nt) associate with VirB10 to form the outer membrane core complex of the Type IV Secretion System injectisome. Despite forming a stable and rigid complex, VirB7Nt behaves as a random coil, while VirB9Ct is intrinsically dynamic in the free state. Here we combined NMR, stopped-flow fluorescence, and computer simulations using structure-based models to characterize the VirB9Ct-VirB7Nt coupled folding and binding mechanism. Qualitative data analysis suggested that VirB9Ct preferentially binds to VirB7Nt by way of a conformational selection mechanism at lower temperatures. However, at higher temperatures, energy barriers between different VirB9Ct conformations are more easily surpassed. Under these conditions the formation of non-native initial encounter complexes may provide alternative pathways toward the native complex conformation. These observations highlight the intimate relationship between folding and binding, calling attention to the fact that the two molecular partners must search for the most favored intramolecular and intermolecular interactions on a rugged and funnelled conformational energy landscape, along which multiple intermediates may lead to the final native state.


Subject(s)
Intrinsically Disordered Proteins , Computer Simulation , Fluorescence , Temperature , Protein Folding , Protein Binding
2.
Bioorg Chem ; 120: 105593, 2022 03.
Article in English | MEDLINE | ID: mdl-35114523

ABSTRACT

Annona crassiflora Mart. is an endemic plant from Brazilian Cerrado (savanna) biome, commonly employed in traditional medicine to treat wounds, diarrhea, and scalp infections. The pulp of the fruits is edible and has a characteristic taste, being employed to prepare sweets like jam, cakes, and ice cream by the people who live in the region of the Cerrado, although the peels are discarded. In this way, the A. crassiflora fruit peels ethanol extract was prepared and subjected to liquid-liquid extraction, which yielded the alkaloidal fraction (CH2Cl2). Subjected to high-performance liquid chromatography separations, this fraction allowed the purification of the aporphine alkaloids stephalagine (1), liriodenine (2), and atherospermidine (3), that were structurally characterized by high-resolution mass spectrometry with electrospray ionization, and nuclear magnetic resonance spectroscopy analyses. Aporphine alkaloids are recognized for their acetylcholinesterase (AChE) inhibitory activity, an important target in Alzheimer's disease therapy. Thus, the ethanol extract, alkaloidal fraction, and compounds1,2,and3were evaluated for acetyl- and butyrylcholinesterase (BChE) inhibitory activities. Compound1(IC50 104.2 µmol L-1) exhibited better BChE inhibitory activity than the standard compound galanthamine (IC50 162.7 µmol L-1), while2had a comparable result(and IC50 167.3 µmol L-1). Furthermore, molecular docking was performed to predict the compound's binding mode to the human AChE at a molecular level. Semiempirical calculation results show that the enthalpy interaction energy (ΔHint) between AChE and BChE active sites and all ligands were favorable for both enzymes, with the ligands interacting even more strongly with AChE, corroborating with IC50 results.


Subject(s)
Alkaloids , Annona , Aporphines , Acetylcholinesterase/metabolism , Alkaloids/pharmacology , Annona/chemistry , Aporphines/pharmacology , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/chemistry , Ethanol , Humans , Ligands , Molecular Docking Simulation , Plant Extracts/pharmacology
3.
J Phys Chem Lett ; 11(3): 800-807, 2020 Feb 06.
Article in English | MEDLINE | ID: mdl-31928018

ABSTRACT

Two equilibrium force microscopy trajectories [q(t)] of high-precision single-molecule spectroscopy assays were analyzed: the pulling of an HIV RNA hairpin and of a 3-aa sequence of the bacteriorhodopsin membrane protein. Both present hundreds of two-state folding transitions, and their free-energy [F(q)] landscapes were previously obtained by deconvolving time signals with the inverse Boltzmann and pfold methods. In this letter, the two F profiles were reconstructed directly from the measured time-series by the drift-diffusion (DrDiff) framework that characterized the effective conformational drift-velocity [v(q)] and diffusion [D(q)] coefficients. The two thermodynamic F profiles reconstructed with DrDiff directly from q(t) were in good agreement with those previously obtained from the deconvolved time signals. q(t) trajectories simulated with a two-dimensional framework in which the diffusion coefficient of the pulling setup (q coordinate) differed from the molecule (x coordinate) were also analyzed by DrDiff. The performance in reconstructing F was investigated in different conditions of diffusion anisotropy in the simulated time-series using Brownian dynamics. In addition, recently developed theories were used in order to evaluate the quality of the analysis performed in the experimental time series: the memory effects and the intrinsic biomolecular dynamic properties after connecting the probe to the molecule. With the 2-dimensional diffusive models and the additional analyses, it is proposed that the different physical regimes imposed by the stiffer probes of the two biomolecules will have an impact in the measured extension-dependent D and, thus, in the reconstruction of F by DrDiff. Stiffer AFM probes may reflect the molecular behavior more faithfully and reconstruction of F might be more successful. The reported quantities extracted directly from q(t) highlights the current state of the biomolecule characterization by force spectroscopy experiments: it is still challenging despite the recent advances, yet it is very promising.

4.
Biophys J ; 111(2): 287-293, 2016 Jul 26.
Article in English | MEDLINE | ID: mdl-27463131

ABSTRACT

Protein folding is a central problem in biological physics. Energetic roughness is an important aspect that controls protein-folding stability and kinetics. The roughness is associated with conflicting interactions in the protein and is also known as frustration. Recent studies indicate that an addition of a small amount of energetic frustration may enhance folding speed for certain proteins. In this study, we have investigated the conditions under which frustration increases the folding rate. We used a Cα structure-based model to simulate a group of proteins. We found that the free-energy barrier at the transition state (ΔF) correlates with nonnative-contact variation (ΔA), and the simulated proteins are clustered according to their fold motifs. These findings are corroborated by the Clementi-Plotkin analytical model. As a consequence, the optimum frustration regime for protein folding can be predicted analytically.


Subject(s)
Protein Folding , Proteins/chemistry , Kinetics , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...