Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Physiol Nutr Metab ; 47(4): 357-368, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35015560

ABSTRACT

The purpose of this paper was to conduct a systematic review and meta-analysis of studies that compared muscle hypertrophy and strength gains between resistance training protocols employing very low (VLL < 30% of 1-repetition maximum (RM) or >35RM), low (LL30%-59% of 1RM, or 16-35RM), moderate (ML60%-79% of 1RM, or 8-15RM), and high (HL ≥ 80% of 1RM, or ≤7RM) loads with matched volume loads (sets × repetitions × weight). A pooled analysis of the standardized mean difference for 1RM strength outcomes across the studies showed a benefit favoring HL vs. LL and vs. ML and favoring ML vs. LL. The LL and VLL results showed little difference. A pooled analysis of the standardized mean difference for hypertrophy outcomes across all studies showed no differences between training loads. Our findings indicate that when the volume load is equal between conditions, the highest loads induce superior dynamic strength gains. Alternatively, hypertrophic adaptations were similar irrespective of the load magnitude. Novelty: Training with higher loads elicits greater gains in 1RM muscle strength when compared to lower loads, even when the volume load is equal between conditions. Muscle hypertrophy is similar irrespective of the magnitude of the load, even when the volume load is equal between conditions.


Subject(s)
Resistance Training , Adaptation, Physiological , Humans , Hypertrophy , Muscle Strength/physiology , Muscle, Skeletal/physiology , Resistance Training/methods
2.
Res Sports Med ; 29(6): 536-546, 2021.
Article in English | MEDLINE | ID: mdl-33241958

ABSTRACT

Although used by resistance-trained individuals, it is unknown if increasing muscle strength prior to hypertrophy training leads to greater muscle growth and strength gains. We investigated muscle thickness and maximum strength in 26 resistance-trained men who were randomly assigned to either: STHT, consisted in a 3-week strength-oriented training period (4x1-3 repetition maximum [RM]) prior to a 5-week hypertrophy-oriented period (4x8-12RM), or HT, which comprised an 8-week hypertrophy-oriented training period. Vastus lateralis muscle thickness, and back squat and leg-press 1-RM were assessed at pre, third week, and after 8 weeks of training. When pre-to-post changes are compared, STHT induced greater muscle growth (p = 0.049; 95%CI = 0.15-3.2%; d = 0.81) and strength gains in the back squat (p = 0.015; 95%CI = 1.5-13%; d = 1.05) and leg-press 45° (p = 0.044; 95%CI = 0.16-9.9%; d = 0.79) compared to HT. Our results support the use of a period to increase muscle strength prior to an HT to increase muscle thickness and maximum strength in resistance-trained men.


Subject(s)
Muscle Strength/physiology , Quadriceps Muscle/physiology , Resistance Training/methods , Weight Lifting/physiology , Adaptation, Physiological , Adult , Humans , Hypertrophy , Male , Time Factors , Young Adult
3.
Eur J Appl Physiol ; 117(4): 767-774, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28251401

ABSTRACT

PURPOSE: It has been suggested that flexibility training may reduce the total volume of training during resistance trainings. The purpose of this study was to compare the effect of flexibility training immediately before resistance training (FLEX-RT) versus resistance training without flexibility training (RT) on maximum strength and the vastus lateralis muscle cross-sectional area (CSA). METHODS: Participants had each leg assigned to RT or FLEX-RT. Both groups performed four sets of leg extensions to voluntary failure of 80% of one repetition maximum (1RM); however, FLEX-RT performed two sets of 25 s of static stretching before resistance training. Number of repetitions and total volume were calculated during weeks 1-5 and 6-10. Vastus lateralis muscle CSA, 1RM, and flexibility were assessed at baseline and after 10 weeks. RESULTS: The number of repetitions and total training volume were greater for RT than FLEX-RT for weeks 1-5 and 6-10. Regarding the vastus lateralis muscle CSA, a main time effect was observed, however, greater change was observed for RT than FLEX-RT (12.7 and 7.4%, respectively). A main time effect for 1RM was also observed with similar changes for RT and FLEX-RT (12.7 and 12.9%, respectively). Flexibility was increased pre- to post-training for FLEX-RT with greater change for FLEX-RT (10.1%) than RT (2.1%). CONCLUSION: These results show that performing flexibility training immediately before resistance training can contribute to a lower number of repetitions, total volume, and muscle hypertrophy.


Subject(s)
Muscle Strength , Muscle Stretching Exercises/methods , Muscle, Skeletal/physiology , Range of Motion, Articular , Adult , Humans , Leg/physiology , Male , Muscle Stretching Exercises/adverse effects , Random Allocation , Resistance Training/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...