Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oncogenesis ; 9(2): 19, 2020 Feb 13.
Article in English | MEDLINE | ID: mdl-32054829

ABSTRACT

Intrahepatic cholangiocarcinoma (iCCA) is a highly fatal malignant cancer worldwide. Elucidating the underlying molecular mechanism of iCCA progression is critical for the identification of new therapeutic targets. The present study explored the role of the miR-148a-GLUT1 axis in the progression of iCCA. The expression of GLUT1 was detected by using immunohistochemistry, western blot assays, and real-time polymerase chain reaction. The effects of GLUT1 on cell proliferation, invasion, and chemoresistance were investigated both in vitro and in vivo. A luciferase reporter assay was used to explore the effect of miR-148a on GLUT1 expression. GLUT1 was overexpressed in iCCA tissues. GLUT1 overexpression was associated with shorter overall and disease-free survival. Knockdown of GLUT1 reduced, while overexpression of GLUT1 promoted, the proliferation, motility, and invasiveness of iCCA cells in vitro and in vivo. Silencing GLUT1 significantly sensitized iCCA cells to gemcitabine in vitro and in vivo. GLUT1 was directly regulated by miR-148a, whose downregulation was associated with the proliferation, migration, and invasion of iCCA cells. WZB117, a GLUT1 inhibitor, inhibited tumor growth in an iCCA patient-derived xenograft model. These results indicate that downregulation of miR-148a levels results in GLUT1 overexpression in iCCA, leading to iCCA progression and gemcitabine resistance.

2.
J Hepatol ; 72(4): 761-773, 2020 04.
Article in English | MEDLINE | ID: mdl-31837357

ABSTRACT

BACKGROUND & AIMS: Mucin 13 (MUC13) is reportedly overexpressed in human malignancies. However, the clinicopathological and biological significance of MUC13 in human intrahepatic cholangiocarcinoma (iCCA) remain unclear. The aim of this study was to define the role of MUC13 in the progression of iCCA. METHODS: Expression levels of MUC13 in human iCCA samples were evaluated by immunohistochemistry, western blot, and real-time PCR. In vitro and in vivo experiments were used to assess the effect of MUC13 on iCCA cell growth and metastasis. Crosstalk between MUC13 and EGFR/PI3K/AKT signaling was analyzed by molecular methods. The upstream regulatory effects of MUC13 were evaluated by Luciferase and DNA methylation assays. RESULTS: MUC13 was overexpressed in human iCCA specimens and iCCA cells. MUC13 overexpression positively correlated with clinicopathological characteristics of iCCA, such as vascular invasion and lymph node metastasis, and was independently associated with poor survival. Results from loss-of-function and gain-of-function experiments suggested that knockdown of MUC13 attenuated, while overexpression of MUC13 enhanced, the proliferation, motility, and invasiveness of iCCA cells in vitro and in vivo. Mechanistically, we found that the phosphatidylinositol 3-kinase-AKT signal pathway and its downstream effectors, such as tissue inhibitor of metalloproteinases 1 and matrix metallopeptidase 9, were required for MUC13-mediated tumor metastasis of iCCA. MUC13 interacted with epidermal growth factor receptor (EGFR) and subsequently activated the EGFR/PI3K/AKT signaling pathway by promoting EGFR dimerization and preventing EGFR internalization. We also found that MUC13 was directly regulated by miR-212-3p, whose downregulation was related to aberrant CpG hypermethylation in the promoter area. CONCLUSIONS: These findings suggest that aberrant hypermethylation-induced downregulation of miR-212-3p results in overexpression of MUC13 in iCCA, leading to metastasis via activation of the EGFR/PI3K/AKT signaling pathway. LAY SUMMARY: Mucin 13 overexpression has been implicated in the development of malignancies, although its role in intrahepatic cholangiocarcinoma has not been studied. Herein, we show that mucin 13 plays a critical role in intrahepatic cholangiocarcinoma. Mucin 13 could have therapeutic value both as a prognostic marker and as a treatment target.


Subject(s)
Bile Duct Neoplasms/metabolism , Cholangiocarcinoma/metabolism , Disease Progression , Mucins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/genetics , Animals , Bile Duct Neoplasms/pathology , Cell Line, Tumor , Cell Movement/genetics , Cholangiocarcinoma/pathology , ErbB Receptors/metabolism , Female , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , MicroRNAs/metabolism , Middle Aged , Mucins/genetics , Retrospective Studies , Transfection , Tumor Burden/genetics , Up-Regulation , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...