Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 13(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38334624

ABSTRACT

The recent emphasis on circadian rhythmicity in critical skin cell functions related to homeostasis, regeneration and aging has shed light on the importance of the PER2 circadian clock gene as a vital antitumor gene. Furthermore, delta-opioid receptors (DOPrs) have been identified as playing a crucial role in skin differentiation, proliferation and migration, which are not only essential for wound healing but also contribute to cancer development. In this study, we propose a significant association between cutaneous opioid receptor (OPr) activity and circadian rhythmicity. To investigate this link, we conducted a 48 h circadian rhythm experiment, during which RNA samples were collected every 5 h. We discovered that the activation of DOPr by its endogenous agonist Met-Enkephalin in N/TERT-1 keratinocytes, synchronized by dexamethasone, resulted in a statistically significant 5.6 h delay in the expression of the core clock gene PER2. Confocal microscopy further confirmed the simultaneous nuclear localization of the DOPr-ß-arrestin-1 complex. Additionally, DOPr activation not only enhanced but also induced a phase shift in the rhythmic binding of ß-arrestin-1 to the PER2 promoter. Furthermore, we observed that ß-arrestin-1 regulates the transcription of its target genes, including PER2, by facilitating histone-4 acetylation. Through the ChIP assay, we determined that Met-Enkephalin enhances ß-arrestin-1 binding to acetylated H4 in the PER2 promoter. In summary, our findings suggest that DOPr activation leads to a phase shift in PER2 expression via ß-arrestin-1-facilitated chromatin remodeling. Consequently, these results indicate that DOPr, much like its role in wound healing, may also play a part in cancer development by influencing PER2.


Subject(s)
Neoplasms , Receptors, Opioid , Humans , beta-Arrestins , Receptors, Opioid/genetics , Keratinocytes , Circadian Rhythm/physiology , beta-Arrestin 1 , Enkephalin, Methionine
2.
Development ; 147(21)2020 11 05.
Article in English | MEDLINE | ID: mdl-33033118

ABSTRACT

Mitchell-Riley syndrome (MRS) is caused by recessive mutations in the regulatory factor X6 gene (RFX6) and is characterised by pancreatic hypoplasia and neonatal diabetes. To determine why individuals with MRS specifically lack pancreatic endocrine cells, we micro-CT imaged a 12-week-old foetus homozygous for the nonsense mutation RFX6 c.1129C>T, which revealed loss of the pancreas body and tail. From this foetus, we derived iPSCs and show that differentiation of these cells in vitro proceeds normally until generation of pancreatic endoderm, which is significantly reduced. We additionally generated an RFX6HA reporter allele by gene targeting in wild-type H9 cells to precisely define RFX6 expression and in parallel performed in situ hybridisation for RFX6 in the dorsal pancreatic bud of a Carnegie stage 14 human embryo. Both in vitro and in vivo, we find that RFX6 specifically labels a subset of PDX1-expressing pancreatic endoderm. In summary, RFX6 is essential for efficient differentiation of pancreatic endoderm, and its absence in individuals with MRS specifically impairs formation of endocrine cells of the pancreas head and tail.


Subject(s)
Cell Differentiation , Diabetes Mellitus/genetics , Diabetes Mellitus/pathology , Endoderm/embryology , Gallbladder Diseases/genetics , Gallbladder Diseases/pathology , Induced Pluripotent Stem Cells/pathology , Intestinal Atresia/genetics , Intestinal Atresia/pathology , Mutation/genetics , Pancreas/embryology , Regulatory Factor X Transcription Factors/genetics , Alleles , Base Sequence , Cell Differentiation/genetics , Chromatin/metabolism , Consanguinity , Diabetes Mellitus/diagnostic imaging , Embryo, Mammalian/metabolism , Embryonic Development , Family , Female , Gallbladder Diseases/diagnostic imaging , Genome, Human , Humans , Induced Pluripotent Stem Cells/metabolism , Intestinal Atresia/diagnostic imaging , Male , Pedigree , Transcription, Genetic , Transcriptome/genetics , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL
...