Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
J Rheumatol ; 39(8): 1524-32, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22753658

ABSTRACT

OBJECTIVE: We aimed to evaluate whether the differential gene expression profiles of patients with rheumatoid arthritis (RA) could distinguish responders from nonresponders to methotrexate (MTX) and, in the case of MTX nonresponders, responsiveness to MTX plus anti-tumor necrosis factor-α (anti-TNF) combined therapy. METHODS: We evaluated 25 patients with RA taking MTX 15-20 mg/week as a monotherapy (8 responders and 17 nonresponders). All MTX nonresponders received infliximab and were reassessed after 20 weeks to evaluate their anti-TNF responsiveness using the European League Against Rheumatism response criteria. A differential gene expression analysis from peripheral blood mononuclear cells was performed in terms of hierarchical gene clustering, and an evaluation of differentially expressed genes was performed using the significance analysis of microarrays program. RESULTS: Hierarchical gene expression clustering discriminated MTX responders from nonresponders, and MTX plus anti-TNF responders from nonresponders. The evaluation of only highly modulated genes (fold change > 1.3 or < 0.7) yielded 5 induced (4 antiapoptotic and CCL4) and 4 repressed (4 proapoptotic) genes in MTX nonresponders compared to responders. In MTX plus anti-TNF non-responders, the CCL4, CD83, and BCL2A1 genes were induced in relation to responders. CONCLUSION: Study of the gene expression profiles of RA peripheral blood cells permitted differentiation of responders from nonresponders to MTX and anti-TNF. Several candidate genes in MTX non-responders (CCL4, HTRA2, PRKCD, BCL2A1, CAV1, TNIP1, CASP8AP2, MXD1, and BTG2) and 3 genes in MTX plus anti-TNF nonresponders (CCL4, CD83, and BCL2A1) were identified for further study.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/genetics , Methotrexate/therapeutic use , Transcriptome , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Adult , Aged , Arthritis, Rheumatoid/drug therapy , Drug Therapy, Combination , Female , HLA-DRB1 Chains/genetics , Humans , Infliximab , Male , Middle Aged , Treatment Outcome
2.
Genet Mol Biol ; 33(1): 159-68, 2010 Jan.
Article in English | MEDLINE | ID: mdl-21637621

ABSTRACT

Gliomas are the most common tumors in the central nervous system, the average survival time of patients with glioblastoma multiforme being about 1 year from diagnosis, in spite of harsh therapy. Aiming to study the transcriptional profiles displayed by glioma cells undergoing cisplatin treatment, gene expression analysis was performed by the cDNA microarray method. Cell survival and apoptosis induction following treatment were also evaluated. Drug concentrations of 12.5 to 300 µM caused a pronounced reduction in cell survival rates five days after treatment, whereas concentrations higher than 25 µM were effective in reducing the survival rates to ~1%. However, the maximum apoptosis frequency was 20.4% for 25 µM cisplatin in cells analyzed at 72 h, indicating that apoptosis is not the only kind of cell death induced by cisplatin. An analysis of gene expression revealed 67 significantly (FDR < 0.05) modulated genes: 29 of which down- and 38 up-regulated. These genes belong to several classes (metabolism, protein localization, cell proliferation, apoptosis, adhesion, stress response, cell cycle and DNA repair) that may represent several affected cell processes under the influence of cisplatin treatment. The expression pattern of three genes (RHOA, LIMK2 and TIMP2) was confirmed by the real time PCR method.

3.
Genet. mol. biol ; 33(1): 159-168, 2010. graf, tab
Article in English | LILACS | ID: lil-566148

ABSTRACT

Gliomas are the most common tumors in the central nervous system, the average survival time of patients with glioblastoma multiforme being about 1 year from diagnosis, in spite of harsh therapy. Aiming to study the transcriptional profiles displayed by glioma cells undergoing cisplatin treatment, gene expression analysis was performed by the cDNA microarray method. Cell survival and apoptosis induction following treatment were also evaluated. Drug concentrations of 12.5 to 300 μM caused a pronounced reduction in cell survival rates five days after treatment, whereas concentrations higher than 25 μM were effective in reducing the survival rates to ~1 percent. However, the maximum apoptosis frequency was 20.4 percent for 25 μM cisplatin in cells analyzed at 72 h, indicating that apoptosis is not the only kind of cell death induced by cisplatin. An analysis of gene expression revealed 67 significantly (FDR < 0.05) modulated genes: 29 of which down- and 38 up-regulated. These genes belong to several classes (metabolism, protein localization, cell proliferation, apoptosis, adhesion, stress response, cell cycle and DNA repair) that may represent several affected cell processes under the influence of cisplatin treatment. The expression pattern of three genes (RHOA, LIMK2 and TIMP2) was confirmed by the real time PCR method.

4.
Ann N Y Acad Sci ; 1173: 493-500, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19758191

ABSTRACT

Patients presenting with active systemic lupus erythematosus (SLE) manifestations may exhibit distinct pathogenetic features in relation to inactive SLE. Also, cDNA microarrays may potentially discriminate the gene expression profile of a disease or disease variant. Therefore, we evaluated the expression profile of 4500 genes in peripheral blood lymphocytes (PBL) of SLE patients. We studied 11 patients with SLE (seven with active SLE and four with inactive SLE) and eight healthy controls. Total RNA was isolated from PBL, reverse transcribed into cDNA, and postlabeled with Cy3 fluorochrome. These probes were then hybridized to a glass slide cDNA microarray containing 4500 human IMAGE cDNA target sequences. An equimolar amount of total RNA from human cell lines served as reference. The microarray images were quantified, normalized, and analyzed using the R environment (ANOVA, significant analysis of microarrays, and cluster-tree view algorithms). Disease activity was assessed by the SLE disease activity index. Compared to the healthy controls, 104 genes in active SLE patients (80 repressed and 24 induced) and 52 genes in nonactive SLE patients (31 induced and 21 repressed) were differentially expressed. The modulation of 12 genes, either induced or repressed, was found in both disease variants; however, each disease variant had differential expression of different genes. Taken together, these results indicate that the two lupus variants studied have common and unique differentially expressed genes. Although the biological significance of the differentially expressed genes discussed above has not been completely understood, they may serve as a platform to further explore the molecular basis of immune deregulation in SLE.


Subject(s)
Gene Expression Profiling , Lupus Erythematosus, Systemic/genetics , Lymphocytes/metabolism , Oligonucleotide Array Sequence Analysis/methods , Adult , Cluster Analysis , Female , Humans , Lupus Erythematosus, Systemic/blood , Lupus Erythematosus, Systemic/pathology , Lymphocytes/cytology , Middle Aged , Young Adult
5.
Ann N Y Acad Sci ; 1173: 521-37, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19758195

ABSTRACT

Linkage studies have identified the human leukocyte antigen (HLA)-DRB1 as a putative rheumatoid arthritis (RA) susceptibility locus (SL). Nevertheless, it was estimated that its contribution was partial, suggesting that other non-HLA genes may play a role in RA susceptibility. To test this hypothesis, we conducted microarray transcription profiling of peripheral blood mononuclear cells in 15 RA patients and analyzed the data, using bioinformatics programs (significance analysis of microarrays method and GeneNetwork), which allowed us to determine the differentially expressed genes and to reconstruct transcriptional networks. The patients were grouped according to disease features or treatment with tumor necrosis factor blocker. Transcriptional networks that were reconstructed allowed us to identify the interactions occurring between RA SL and other genes, for example, HLA-DRB1 interacting with FNDC3A (fibronectin type III domain containing 3A). Given that fibronectin fragments can stimulate mediators of matrix and cartilage destruction in RA, this interaction is of special interest and may contribute to a clearer understanding of the functional role of HLA-DRB1 in RA pathogenesis.


Subject(s)
Arthritis, Rheumatoid/genetics , Gene Expression Profiling , Gene Regulatory Networks/genetics , Genetic Predisposition to Disease/genetics , Arthritis, Rheumatoid/immunology , Autoantibodies/blood , Enzyme-Linked Immunosorbent Assay , HLA-DR Antigens/genetics , HLA-DR Antigens/immunology , HLA-DRB1 Chains , Humans , Models, Genetic , Oligonucleotide Array Sequence Analysis/methods , Peptides, Cyclic/immunology
6.
J Radiat Res ; 50(1): 61-71, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19218781

ABSTRACT

Ionizing radiation (IR) imposes risks to human health and the environment. IR at low doses and low dose rates has the potency to initiate carcinogenesis. Genotoxic environmental agents such as IR trigger a cascade of signal transduction pathways for cellular protection. In this study, using cDNA microarray technique, we monitored the gene expression profiles in lymphocytes derived from radiation-exposed individuals (radiation workers). Physical dosimetry records on these patients indicated that the absorbed dose ranged from 0.696 to 39.088 mSv. Gene expression analysis revealed statistically significant transcriptional changes in a total of 78 genes (21 up-regulated and 57 down-regulated) involved in several biological processes such as ubiquitin cycle (UHRF2 and PIAS1), DNA repair (LIG3, XPA, ERCC5, RAD52, DCLRE1C), cell cycle regulation/proliferation (RHOA, CABLES2, TGFB2, IL16), and stress response (GSTP1, PPP2R5A, DUSP22). Some of the genes that showed altered expression profiles in this study can be used as biomarkers for monitoring the chronic low level exposure in humans. Additionally, alterations in gene expression patterns observed in chronically exposed radiation workers reinforces the need for defining the effective radiation dose that causes immediate genetic damage as well as the long-term effects on genomic instability, including cancer.


Subject(s)
Blood Proteins/analysis , Gene Expression Profiling/methods , Gene Expression Regulation/physiology , Gene Expression Regulation/radiation effects , Nuclear Power Plants , Occupational Exposure/analysis , Adult , Female , Humans , Middle Aged , Radiation Dosage
7.
Immunology ; 127(3): 365-72, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19191904

ABSTRACT

This study aimed to evaluate the association between the differential gene expression profiling of peripheral blood mononuclear cells of rheumatoid arthritis patients with their immunogenetic (human leucocyte antigen shared-epitope, HLA-SE), autoimmune response [anti-cyclic citrullinated peptide (CCP) antibodies], disease activity score (DAS-28) and treatment (disease-modifying antirheumatic drugs and tumour necrosis factor blocker) features. Total RNA samples were copied into Cy3-labelled complementary DNA probes, hybridized onto a glass slide microarray containing 4500 human IMAGE complementary DNA target sequences. The Cy3-monocolour microarray images from patients were quantified and normalized. Analysis of the data using the significance analysis of microarrays algorithm together with a Venn diagram allowed the identification of shared and of exclusively modulated genes, according to patient features. Thirteen genes were exclusively associated with the presence of HLA-SE alleles, whose major biological function was related to signal transduction, phosphorylation and apoptosis. Ninety-one genes were associated with disease activity, being involved in signal transduction, apoptosis, response to stress and DNA damage. One hundred and one genes were associated with the presence of anti-CCP antibodies, being involved in signal transduction, cell proliferation and apoptosis. Twenty-eight genes were associated with tumour necrosis factor blocker treatment, being involved in intracellular signalling cascade, phosphorylation and protein transport. Some of these genes had been previously associated with rheumatoid arthritis pathogenesis, whereas others were unveiled for future research.


Subject(s)
Arthritis, Rheumatoid/immunology , Leukocytes, Mononuclear/immunology , Adult , Aged , Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Autoantibodies/blood , Female , Gene Expression Profiling/methods , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , HLA-DR Antigens/analysis , HLA-DRB1 Chains , Histocompatibility Testing , Humans , Male , Middle Aged , Oligonucleotide Array Sequence Analysis/methods , Peptides, Cyclic/immunology , Severity of Illness Index , Tumor Necrosis Factor-alpha/antagonists & inhibitors
8.
J Gene Med ; 11(1): 66-78, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19035575

ABSTRACT

BACKGROUND: The continued increase in tuberculosis (TB) rates and the appearance of extremely resistant Mycobacterium tuberculosis strains (XDR-TB) worldwide are some of the great problems of public health. In this context, DNA immunotherapy has been proposed as an effective alternative that could circumvent the limitations of conventional drugs. Nonetheless, the molecular events underlying these therapeutic effects are poorly understood. METHODS: We characterized the transcriptional signature of lungs from mice infected with M. tuberculosis and treated with heat shock protein 65 as a genetic vaccine (DNAhsp65) combining microarray and real-time polymerase chain reaction analysis. The gene expression data were correlated with the histopathological analysis of lungs. RESULTS: The differential modulation of a high number of genes allowed us to distinguish DNAhsp65-treated from nontreated animals (saline and vector-injected mice). Functional analysis of this group of genes suggests that DNAhsp65 therapy could not only boost the T helper (Th)1 immune response, but also could inhibit Th2 cytokines and regulate the intensity of inflammation through fine tuning of gene expression of various genes, including those of interleukin-17, lymphotoxin A, tumour necrosis factor-alpha, interleukin-6, transforming growth factor-beta, inducible nitric oxide synthase and Foxp3. In addition, a large number of genes and expressed sequence tags previously unrelated to DNA-therapy were identified. All these findings were well correlated with the histopathological lesions presented in the lungs. CONCLUSIONS: The effects of DNA therapy are reflected in gene expression modulation; therefore, the genes identified as differentially expressed could be considered as transcriptional biomarkers of DNAhsp65 immunotherapy against TB. The data have important implications for achieving a better understanding of gene-based therapies.


Subject(s)
Bacterial Proteins/genetics , Chaperonins/genetics , Lung/metabolism , Mycobacterium tuberculosis/genetics , Tuberculosis, Pulmonary/genetics , Tuberculosis, Pulmonary/therapy , Vaccines, DNA/therapeutic use , Animals , Chaperonin 60 , DNA, Bacterial/genetics , DNA, Bacterial/therapeutic use , Female , Gene Expression Profiling , Immunotherapy , Lung/microbiology , Lung/pathology , Mice , Mice, Inbred BALB C , Mycobacterium tuberculosis/metabolism , Tuberculosis, Pulmonary/prevention & control , Vaccines, DNA/genetics
9.
Ann N Y Acad Sci ; 1150: 282-9, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19120314

ABSTRACT

The MHC region (6p21) aggregates the major genes that contribute to susceptibility to type 1 diabetes (T1D). Three additional relevant susceptibility regions mapped on chromosomes 1p13 (PTPN22), 2q33 (CTLA-4), and 11p15 (insulin) have also been described by linkage studies. To evaluate the contribution of these susceptibility regions and the chromosomes that house these regions, we performed a large-scale differential gene expression on lymphomononuclear cells of recently diagnosed T1D patients, pinpointing relevant modulated genes clustered in these regions and their respective chromosomes. A total of 4608 cDNAs from the IMAGE library were spotted onto glass slides using robotic technology. Statistical analysis was carried out using the SAM program, and data regarding gene location and biological function were obtained at the SOURCE, NCBI, and FATIGO programs. Three induced genes were observed spanning around the MHC region (6p21-6p23), and seven modulated genes (5 repressed and 2 repressed) were seen spanning around the 6q21-24 region. Additional modulated genes were observed in and around the 1p13, 2q33, and 11p15 regions. Overall, modulated genes in these regions were primarily associated with cellular metabolism, transcription factors and signaling transduction. The differential gene expression characterization may identify new genes potentially involved with diabetes pathogenesis.


Subject(s)
Diabetes Mellitus, Type 1/genetics , Gene Expression Profiling , Genetic Predisposition to Disease/genetics , Oligonucleotide Array Sequence Analysis , Adolescent , Case-Control Studies , Child , Child, Preschool , Chromosome Mapping , Chromosomes, Human, Pair 11 , Chromosomes, Human, Pair 6 , Cluster Analysis , Female , Gene Frequency , Genes, MHC Class II , Humans , Male
10.
Mol Cell Biochem ; 304(1-2): 235-41, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17534698

ABSTRACT

Cyclosporin A (CsA) is a potent immunosuppressant that has been extensively used to attenuate patient immune response following organ transplantation. The molecular biological mechanism of CsA has been extensively investigated in human T cells, and it has been shown to involve modulation of the intracellular calcineurin pathway. However, it is plausible that this chemical immunosuppressant certainly up- or down-regulate many other biochemical pathways of immune cells. In the present study, we used the cDNA microarray method to characterize the gene expression profile of human peripheral blood mononuclear cells (PBMC) treated in vitro with CsA and controls. The CsA treated PBMC displayed statistically significant induction of genes involved in the control of cell-cycle regulation (TRRAP), apoptosis/DNA repair (PRKDC, MAEA, TIA1), DNA metabolism/response to DNA damage stimulus (PRKDC, FEN1), transcription (NR4A2, THRA) and cell proliferation (FEN1, BIN1), whose data have permitted identification of target genes involved in CsA immunosuppression.


Subject(s)
Apoptosis/genetics , Cell Cycle/genetics , Cyclosporine/pharmacology , DNA Repair/genetics , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Oligonucleotide Array Sequence Analysis , Gene Expression Profiling , Gene Expression Regulation/drug effects , Humans
11.
Cell Mol Neurobiol ; 27(5): 575-84, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17393298

ABSTRACT

1. This study presents a time course analysis of the messenger RNA (mRNA) levels of c-fos, vasopressin (VP), and oxytocin (OT) in the paraventricular (PVN) and supraoptic nucleus (SON), following acute and chronic dehydration by water deprivation. 2. Male Wistar rats were separated into five groups: nondehydrated (control group) and dehydrated for 6, 24, 48 and 72 h. Following water deprivation, animals were decapitated, their blood was collected for hematocrit, osmolality, and plasma sodium measurements, and brains were removed for dissection of both PVN and SON. 3. As expected, the hematocrit, osmolality, plasma sodium, and weight loss were increased after water deprivation. In SON, a significant increase in both VP and OT mRNA expression was observed 6 h after dehydration reaching a peak at 24 h and returning to basal levels of expression at 72 h. In the PVN, an increase in both VP and OTmRNA expression occurred 24 h after dehydration. At 72 h the VP and OT mRNA expression levels had decreased but they were still at higher levels than those detected in control animals. 4. These results suggest that SON is the first nucleus to respond to the dehydration stimulus. Additionally, we also observed an increase in c-fos mRNA expression in both PVN and SON 6 h after water deprivation, which progressively decreased 24, 48, and 72 h after the onset of water deprivation. Therefore, it is possible that c-fos may be involved in the modulation of VP and OT genes, regulating the mRNA expression levels on a temporally distinct basis within the PVN and SON.


Subject(s)
Dehydration/physiopathology , Hypothalamus, Anterior/physiology , Oxytocin/genetics , Paraventricular Hypothalamic Nucleus/physiology , Proto-Oncogene Proteins c-fos/genetics , Vasopressins/genetics , Animals , Gene Expression/physiology , Hematocrit , Male , Osmolar Concentration , RNA, Messenger/metabolism , Rats , Rats, Wistar , Sodium/blood , Water Deprivation/physiology , Weight Loss
12.
Immunology ; 119(3): 369-75, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16903901

ABSTRACT

T-cell differentiation and induction of tolerance to self-antigens occurs mainly in the thymus. Thymic stromal cells, specifically medullary thymic epithelial cells, express a diverse set of genes encoding parenchymal organ-specific proteins. This phenomenon has been termed promiscuous gene expression (PGE) and has been implicated in preventing organ-specific autoimmunity by inducing T-cell tolerance to self antigens. Early thymopoiesis and the critical factors involved in T-cell differentiation can be reproduced in vitro by murine fetal thymus organ culture (FTOC), which mimics the natural thymic microenvironment. To evaluate the occurrence of PGE in FTOC, gene expression profiling during in vitro thymic development in BALB/c mice was performed using a set of nylon cDNA microarrays containing 9216 sequences. The statistical analysis of the microarray data (sam program) revealed the temporal repression and induction of 57 parenchymal and seven lymphoid organ-specific genes. Most of the genes analysed are repressed during early thymic development (15-17 days post-coitum). The expression of the autoimmune regulator (AIRE) gene at 16 days post-coitum marks the onset of PGE. This precedes the induction of parenchymal organ genes during the late developmental phase at 20 days post-coitum. The mechanism of T-cell tolerance induction begins during fetal development and continues into adulthood. Our findings are significant because they show a fine demarcation of PGE onset, which plays a central role in induction of T-cell tolerance.


Subject(s)
Gene Expression Regulation, Developmental , Thymus Gland/embryology , Animals , Cell Differentiation/genetics , Cell Differentiation/immunology , Chromosome Mapping , Fetal Development/genetics , Gene Expression Profiling/methods , Mice , Mice, Inbred BALB C , Oligonucleotide Array Sequence Analysis/methods , Organ Culture Techniques , Reverse Transcriptase Polymerase Chain Reaction/methods , Self Tolerance/genetics , Thymus Gland/immunology , Thymus Gland/metabolism
13.
Mutat Res ; 544(2-3): 403-13, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14644343

ABSTRACT

Cell response to genotoxic agents is complex and involves the participation of different classes of genes (DNA repair, cell cycle control, signal transduction, apoptosis and oncogenesis). In this report, we present three approaches to document gene expression profiles, dealing with the evaluation of cellular responses to genotoxic agents (gamma-rays from 60Cobalt and cyclophosphamide). We used the method of cDNA arrays to analyze the differential gene expression profiles that were displayed by lymphocytes from radiation-exposed individuals, a human fibroblast cell line, and T lymphocytes from systemic lupus erythematosus (SLE) patients who were treated with cyclophosphamide. A preliminary analysis performed in lymphocytes from three radiation-workers showed that several induced genes can be associated with cell response to ionizing radiation: TRRAP (cell cycle regulation), Ligase IV (DNA repair), MAPK8IP1 and MAPK10 (signal transduction), RASSF2 (apoptosis induction/tumorigenesis), p53 (damage response/maintenance of genetic stability). The in vitro irradiated normal VH16 cell line (primary) showed a complex response to the genotoxic stress at the molecular level. Many apoptotic pathways were concomitantly induced. In addition, several genes involved in signaling and cell cycle arrest/control were significantly modulated after irradiation. Many genes involved in oxidative damage were also induced, indicating that this mechanism seems to be an important component of cell response. After treatment of the SLE patients with cyclophosphamide, 154 genes were differentially and significantly induced. Among them, we identified those associated with drug detoxification, cell cycle control, apoptosis, and tumor-suppressor. These findings indicate that at least two apoptotic pathways were induced after cyclophosphamide treatment. The induction of APAF1 and two genes coding for two subunits of cytochrome c supports a previous report showing increased apoptosis in lymphocytes from SLE patients. The present study provides new information on the molecular mechanism underlying the cell response to genotoxic stress, with relevance to basic and clinical research.


Subject(s)
Fibroblasts/radiation effects , Gene Expression Profiling/methods , Occupational Exposure , Blood Donors , Cell Culture Techniques/methods , Cells, Cultured , Fibroblasts/cytology , Humans , Oligonucleotide Array Sequence Analysis/methods , T-Lymphocytes/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...