Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 10(1): 5011, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31676791

ABSTRACT

Upregulation of fatty acid synthase (FASN) is a common event in cancer, although its mechanistic and potential therapeutic roles are not completely understood. In this study, we establish a key role of FASN during transformation. FASN is required for eliciting the anaplerotic shift of the Krebs cycle observed in cancer cells. However, its main role is to consume acetyl-CoA, which unlocks isocitrate dehydrogenase (IDH)-dependent reductive carboxylation, producing the reductive power necessary to quench reactive oxygen species (ROS) originated during the switch from two-dimensional (2D) to three-dimensional (3D) growth (a necessary hallmark of cancer). Upregulation of FASN elicits the 2D-to-3D switch; however, FASN's synthetic product palmitate is dispensable for this process since cells satisfy their fatty acid requirements from the media. In vivo, genetic deletion or pharmacologic inhibition of FASN before oncogenic activation prevents tumor development and invasive growth. These results render FASN as a potential target for cancer prevention studies.


Subject(s)
Embryonic Stem Cells/metabolism , Fatty Acid Synthases/metabolism , Fatty Acids/metabolism , Fibroblasts/metabolism , Neoplasms, Experimental/metabolism , Animals , Cell Line , Cells, Cultured , Embryo, Mammalian/cytology , Embryonic Stem Cells/cytology , Fatty Acid Synthases/chemistry , Fatty Acid Synthases/genetics , Female , Fibroblasts/cytology , HEK293 Cells , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Nude , Mice, Transgenic , Neoplasms, Experimental/genetics , Neoplasms, Experimental/pathology , Tumor Burden/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...