Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
FASEB J ; 38(11): e23726, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38847773

ABSTRACT

Calcitriol and calcimimetics are used to treat hyperparathyroidism secondary to chronic kidney disease (CKD). Calcitriol administration and the subsequent increase in serum calcium concentration decrease parathyroid hormone (PTH) levels, which should reduce bone remodeling. We have previously reported that, when maintaining a given concentration of PTH, the addition of calcimimetics is associated with an increased bone cell activity. Whether calcitriol administration affects bone cell activity while PTH is maintained constant should be evaluated in an animal model of renal osteodystrophy. The aim of the present study was to compare in CKD PTH-clamped rats the bone effects of calcitriol and calcimimetic administration. The results show that the administration of calcitriol and calcimimetic at doses that induced a similar reduction in PTH secretion produced dissimilar effects on osteoblast activity in 5/6 nephrectomized (Nx) rats with secondary hyperparathyroidism and in Nx rats with clamped PTH. Remarkably, in both rat models, the administration of calcitriol decreased osteoblastic activity, whereas calcimimetic increased bone cell activity. In vitro, calcitriol supplementation inhibited nuclear translocation of ß-catenin and reduced proliferation, osteogenesis, and mineralization in mesenchymal stem cells differentiated into osteoblasts. In conclusion, besides the action of calcitriol and calcimimetics at parathyroid level, these treatments have specific effects on bone cells that are independent of the PTH level.


Subject(s)
Calcimimetic Agents , Calcitriol , Osteoblasts , Parathyroid Hormone , Animals , Calcitriol/pharmacology , Rats , Calcimimetic Agents/pharmacology , Calcimimetic Agents/therapeutic use , Parathyroid Hormone/pharmacology , Male , Osteoblasts/drug effects , Osteoblasts/metabolism , Hyperparathyroidism, Secondary/drug therapy , Hyperparathyroidism, Secondary/etiology , Hyperparathyroidism, Secondary/metabolism , Bone and Bones/metabolism , Bone and Bones/drug effects , Rats, Wistar , Renal Insufficiency/drug therapy , Renal Insufficiency/metabolism , Osteogenesis/drug effects , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/complications , Cell Differentiation/drug effects , Calcium/metabolism
2.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38673780

ABSTRACT

Cognitive impairment (CI) is a complication of chronic kidney disease (CKD) that is frequently observed among patients. The aim of this study was to evaluate the potential crosstalk between changes in cognitive function and the levels of Klotho in the brain cortex in an experimental model of CKD. To induce renal damage, Wistar rats received a diet containing 0.25% adenine for six weeks, while the control group was fed a standard diet. The animals underwent different tests for the assessment of cognitive function. At sacrifice, changes in the parameters of mineral metabolism and the expression of Klotho in the kidney and frontal cortex were evaluated. The animals with CKD exhibited impaired behavior in the cognitive tests in comparison with the rats with normal renal function. At sacrifice, CKD-associated mineral disorder was confirmed by the presence of the expected disturbances in the plasma phosphorus, PTH, and both intact and c-terminal FGF23, along with a reduced abundance of renal Klotho. Interestingly, a marked and significant decrease in Klotho was observed in the cerebral cortex of the animals with renal dysfunction. In sum, the loss in cerebral Klotho observed in experimental CKD may contribute to the cognitive dysfunction frequently observed among patients. Although further studies are required, Klotho might have a relevant role in the development of CKD-associated CI and represent a potential target in the management of this complication.


Subject(s)
Cerebral Cortex , Cognitive Dysfunction , Glucuronidase , Klotho Proteins , Renal Insufficiency, Chronic , Animals , Male , Rats , Cerebral Cortex/metabolism , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/etiology , Disease Models, Animal , Fibroblast Growth Factor-23/metabolism , Fibroblast Growth Factors/metabolism , Glucuronidase/metabolism , Kidney/metabolism , Klotho Proteins/metabolism , Rats, Wistar , Renal Insufficiency, Chronic/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...