Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 14(17): 11797-11810, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38617576

ABSTRACT

Neuromorphic computing is a new field of information technology, which is inspired by the biomimetic properties of the memristor as an electronic synapse and neuron. If there are electronic receptors that can transmit exterior impulses to the internal nervous system, then the use of memristors can be expanded to artificial nerves. In this study, a layer type memristor is used to build an artificial nociceptor in a very feasible and straightforward manner. An artificial nociceptor is demonstrated here through the fabrication and characterization of a cobalt-doped zinc oxide (CZO)/Au based memristor. In order to increase threshold switching performance, the surface effects of the CZO layer are eliminated by adding cobalt cobalt-doped zinc oxide (CZO) layer between the P++-Si and Au electrodes. Allodynia, hyperalgesia, threshold, and relaxation are the four distinct nociceptive behaviours that the device displays based on the strength, rate of relapse, and duration of the external stimuli. The electrons that are trapped in or released from the CZO layer's traps are responsible for these nociceptive behaviours. A multipurpose nociceptor performance is produced by this type of CZO-based device, which is crucial for artificial intelligence system applications such as neural integrated devices with nanometer-sized characteristics.

2.
Heliyon ; 10(4): e26633, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38404854

ABSTRACT

The present study serves experimental and theoretical analyses in developing a hybrid advanced structure as a photolysis, which is based on electrospun Graphene Oxide-titanium dioxide (GO-TiO2) nanofibers as an electron transfer material (ETMs) functionalized for perovskite solar cell (PVSCs) with GO. The prepared ETMs were utilized for the synthesis of mixed-cation (FAPbI3)0.8(MAPbBr3)0.2. The effect of GO on TiO2 and their chemical structure, electronic and morphological characteristic were investigated and discussed. The elaborated device, namely ITO/Bl-TiO2/3 wt% GO-TiO2/(FAPbI3)0.8(MAPbBr3)0.2/spiro-MeTAD/Pt, displayed 20.14% disposition and conversion solar energy with fill factor (FF) of 1.176%, short circuit current density (Jsc) of 20.56 mA/cm2 and open circuit voltage (VOC) 0.912 V. The obtained efficiency is higher than titanium oxide (18.42%) and other prepared GO-TiO2 composite nanofibers based ETMs. The developed materials and device would facilitate elaboration of advanced functional materials and devices for energy storage applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...