Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 83(17): 2889-2907, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37335130

ABSTRACT

Triple-negative breast cancers (TNBC) tend to become invasive and metastatic at early stages in their development. Despite some treatment successes in early-stage localized TNBC, the rate of distant recurrence remains high, and long-term survival outcomes remain poor. In a search for new therapeutic targets for this disease, we observed that elevated expression of the serine/threonine kinase calcium/calmodulin (CaM)-dependent protein kinase kinase 2 (CaMKK2) is highly correlated with tumor invasiveness. In validation studies, genetic disruption of CaMKK2 expression or inhibition of its activity with small molecule inhibitors disrupted spontaneous metastatic outgrowth from primary tumors in murine xenograft models of TNBC. High-grade serous ovarian cancer (HGSOC), a high-risk, poor prognosis ovarian cancer subtype, shares many features with TNBC, and CaMKK2 inhibition effectively blocked metastatic progression in a validated xenograft model of this disease. Mechanistically, CaMKK2 increased the expression of the phosphodiesterase PDE1A, which hydrolyzed cyclic guanosine monophosphate (cGMP) to decrease the cGMP-dependent activity of protein kinase G1 (PKG1). Inhibition of PKG1 resulted in decreased phosphorylation of vasodilator-stimulated phosphoprotein (VASP), which in its hypophosphorylated state binds to and regulates F-actin assembly to facilitate cell movement. Together, these findings establish a targetable CaMKK2-PDE1A-PKG1-VASP signaling pathway that controls cancer cell motility and metastasis by impacting the actin cytoskeleton. Furthermore, it identifies CaMKK2 as a potential therapeutic target that can be exploited to restrict tumor invasiveness in patients diagnosed with early-stage TNBC or localized HGSOC. SIGNIFICANCE: CaMKK2 regulates actin cytoskeletal dynamics to promote tumor invasiveness and can be inhibited to suppress metastasis of breast and ovarian cancer, indicating CaMKK2 inhibition as a therapeutic strategy to arrest disease progression.


Subject(s)
Ovarian Neoplasms , Triple Negative Breast Neoplasms , Animals , Female , Humans , Mice , Actins/metabolism , Cell Movement , Ovarian Neoplasms/drug therapy , Protein Kinases
2.
bioRxiv ; 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37131673

ABSTRACT

Triple-negative breast cancers (TNBCs) tend to become highly invasive early during cancer development. Despite some successes in the initial treatment of patients diagnosed with early-stage localized TNBC, the rate of metastatic recurrence remains high with poor long-term survival outcomes. Here we show that elevated expression of the serine/threonine-kinase, Calcium/Calmodulin (CaM)-dependent protein kinase kinase-2 (CaMKK2), is highly correlated with tumor invasiveness. We determined that genetic disruption of CaMKK2 expression, or inhibition of its activity, disrupted spontaneous metastatic outgrowth from primary tumors in murine xenograft models of TNBC. High-grade serous ovarian cancer (HGSOC), a high-risk, poor-prognosis ovarian cancer subtype, shares many genetic features with TNBC, and importantly, CaMKK2 inhibition effectively blocked metastatic progression in a validated xenograft model of this disease. Probing the mechanistic links between CaMKK2 and metastasis we defined the elements of a new signaling pathway that impacts actin cytoskeletal dynamics in a manner which increases cell migration/invasion and metastasis. Notably, CaMKK2 increases the expression of the phosphodiesterase PDE1A which decreases the cGMP-dependent activity of protein kinase G1 (PKG1). This inhibition of PKG1 results in decreased phosphorylation of Vasodilator-Stimulated Phosphoprotein (VASP), which in its hypophosphorylated state binds to and regulates F-actin assembly to facilitate contraction/cell movement. Together, these data establish a targetable CaMKK2-PDE1A-PKG1-VASP signaling pathway that controls cancer cell motility and metastasis. Further, it credentials CaMKK2 as a therapeutic target that can be exploited in the discovery of agents for use in the neoadjuvant/adjuvant setting to restrict tumor invasiveness in patients diagnosed with early-stage TNBC or localized HGSOC.

3.
Cancer Immunol Res ; 11(1): 109-122, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36301267

ABSTRACT

Calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) is a key regulator of energy homeostasis in several cell types. Expression of this enzyme in tumor cells promotes proliferation and migration, and expression in tumor-associated immune cells facilitates M2 macrophage polarization and the development of myeloid-derived suppressor cells. Thus, there has been interest in developing CaMKK2 inhibitors as potential anticancer therapeutics. One impediment to clinical development of these agents is that the roles of CaMKK2 in other cellular compartments within the tumor immune microenvironment remain to be established. We report herein that CaMKK2 is expressed at low basal levels in natural killer (NK) cells but is upregulated in tumor-infiltrating NK cells where it suppresses apoptosis and promotes proliferation. NK cell-intrinsic deletion of CaMKK2 increased metastatic progression in several murine models, establishing a critical role for this enzyme in NK cell-mediated antitumor immunity. Ablation of the CaMKK2 protein, but not inhibition of its kinase activity, resulted in decreased NK-cell survival. These results indicate an important scaffolding function for CaMKK2 in NK cells and suggest that competitive CaMKK2 inhibitors and ligand-directed degraders (LDD) are likely to have distinct therapeutic utilities. Finally, we determined that intracellular lactic acid is a key driver of CaMKK2 expression, suggesting that upregulated expression of this enzyme is an adaptive mechanism by which tumor-infiltrating NK cells mitigate the deleterious effects of a lactic acid-rich tumor microenvironment. The findings of this study should inform strategies to manipulate the CaMKK2-signaling axis as a therapeutic approach in cancer.


Subject(s)
Neoplasms , Humans , Mice , Animals , Neoplasms/metabolism , Signal Transduction , Phosphorylation , Apoptosis , Macrophages , Tumor Microenvironment , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism
4.
ACS Cent Sci ; 1(3): 142-147, 2015 Jun 24.
Article in English | MEDLINE | ID: mdl-26955657

ABSTRACT

We generated 18F-labeled antibody fragments for PET imaging using a sortase-mediated reaction to install a transcyclooctene (TCO)-functionalized short peptide onto proteins of interest, followed by reaction with a tetrazine-labeled-18F-2-deoxyfluoroglucose (FDG). The method is rapid, robust, and site-specific (radiochemical yields >25%, not decay corrected). The availability of 18F-2-deoxyfluoroglucose avoids the need for more complicated chemistries used to generate carbon-fluorine bonds. We demonstrate the utility of the method by detecting heterotopic pancreatic tumors in mice by PET, using anti-Class II MHC single domain antibodies. We correlate macroscopic PET images with microscopic two-photon visualization of the tumor. Our approach provides easy access to 18F-labeled antibodies and their fragments at a level of molecular specificity that complements conventional18F-FDG imaging.

SELECTION OF CITATIONS
SEARCH DETAIL
...