Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 628(8008): 505-506, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38600195
2.
Science ; 374(6575): 1555-1556, 2021 Dec 24.
Article in English | MEDLINE | ID: mdl-34941417

ABSTRACT

Strong magnon-phonon coupling may help develop superfast optical drives.


Subject(s)
Magnetic Phenomena , Physical Phenomena
3.
Nano Lett ; 21(12): 5098-5104, 2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34101474

ABSTRACT

Two-dimensional (2D) materials are able to strongly confine light hybridized with collective excitations of atoms, enabling electric-field enhancements and novel spectroscopic applications. Recently, freestanding monolayers of perovskite oxides have been synthesized, which possess highly infrared-active phonon modes and a complex interplay of competing interactions. Here, we show that this new class of 2D materials exhibits highly confined phonon polaritons by evaluating central figures of merit for phonon polaritons in the tetragonal phases of the 2D perovskites SrTiO3, KTaO3, and LiNbO3, using density functional theory calculations. Specifically, we compute the 2D phonon-polariton dispersions, the propagation-quality, confinement, and deceleration factors, and we show that they are comparable to those found in the prototypical 2D dielectric hexagonal boron nitride. Our results suggest that monolayers of perovskite oxides are promising candidates for polaritonic platforms that enable new possibilities in terms of tunability and spectral ranges.

4.
Nano Lett ; 21(7): 2939-2945, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33739114

ABSTRACT

Time-dependent rotational electric polarizations have been proposed to generate temporally varying magnetic moments, for example, through a combination of ferroelectric polarization and optical phonons. This phenomenon has been called dynamical multiferroicity, but explicit experimental demonstrations have been elusive to date. Here, we report the detection of a temporal magnetic moment as high as 1.2 µB/atom in a charge-doped thin film of silicon under flexural strain. We demonstrate that the magnetic moment is generated by a combination of electric polarization arising from a flexoelectronic charge separation along the strain gradient and the deformation potential of phonons. The effect can be controlled by adjusting the external strain gradient, doping concentration, and dopant and can be regarded as a dynamical multiferroic effect involving flexoelectronic polarization instead of ferroelectricity. The discovery of a large magnetic moment in silicon may enable the use of nonmagnetic and nonferroelectric semiconductors in various multiferroic and spintronic applications.

5.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Article in English | MEDLINE | ID: mdl-33558241

ABSTRACT

The ultrafast polarization response to incident light and ensuing exciton/carrier generation are essential to outstanding optoelectronic properties of lead halide perovskites (LHPs). A large number of mechanistic studies in the LHP field to date have focused on contributions to polarizability from organic cations and the highly polarizable inorganic lattice. For a comprehensive understanding of the ultrafast polarization response, we must additionally account for the nearly instantaneous hyperpolarizability response to the propagating light field itself. While light propagation is pivotal to optoelectronics and photonics, little is known about this in LHPs in the vicinity of the bandgap where stimulated emission, polariton condensation, superfluorescence, and photon recycling may take place. Here we develop two-dimensional optical Kerr effect (2D-OKE) spectroscopy to energetically dissect broadband light propagation and dispersive nonlinear polarization responses in LHPs. In contrast to earlier interpretations, the below-bandgap OKE responses in both hybrid CH3NH3PbBr3 and all-inorganic CsPbBr3 perovskites are found to originate from strong hyperpolarizability and highly anisotropic dispersions. In both materials, the nonlinear mixing of anisotropically propagating light fields results in convoluted oscillatory polarization dynamics. Based on a four-wave mixing model, we quantitatively derive dispersion anisotropies, reproduce 2D-OKE frequency correlations, and establish polarization-dressed light propagation in single-crystal LHPs. Moreover, our findings highlight the importance of distinguishing the often-neglected anisotropic light propagation from underlying coherent quasiparticle responses in various forms of ultrafast spectroscopy.

6.
Sci Adv ; 6(40)2020 Sep.
Article in English | MEDLINE | ID: mdl-32998882

ABSTRACT

Electron paramagnetic resonance (EPR) spectroscopy is widely used to characterize paramagnetic complexes. Recently, EPR combined with scanning tunneling microscopy (STM) achieved single-spin sensitivity with sub-angstrom spatial resolution. The excitation mechanism of EPR in STM, however, is broadly debated, raising concerns about widespread application of this technique. We present an extensive experimental study and modeling of EPR-STM of Fe and hydrogenated Ti atoms on a MgO surface. Our results support a piezoelectric coupling mechanism, in which the EPR species oscillate adiabatically in the inhomogeneous magnetic field of the STM tip. An analysis based on Bloch equations combined with atomic-multiplet calculations identifies different EPR driving forces. Specifically, transverse magnetic field gradients drive the spin-1/2 hydrogenated Ti, whereas longitudinal magnetic field gradients drive the spin-2 Fe. Also, our results highlight the potential of piezoelectric coupling to induce electric dipole moments, thereby broadening the scope of EPR-STM to nonpolar species and nonlinear excitation schemes.

7.
Phys Rev Lett ; 124(11): 117401, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-32242728

ABSTRACT

It has recently been indicated that the hexagonal manganites exhibit Higgs- and Goldstone-like phonon modes that modulate the amplitude and phase of their primary order parameter. Here, we describe a mechanism by which a silent Goldstone-like phonon mode can be coherently excited, which is based on nonlinear coupling to an infrared-active Higgs-like phonon mode. Using a combination of first-principles calculations and phenomenological modeling, we describe the coupled Higgs-Goldstone dynamics in response to the excitation with a terahertz pulse. Besides theoretically demonstrating coherent control of crystallographic Higgs and Goldstone excitations, we show that the previously inaccessible silent phonon modes can be excited coherently with this mechanism.

8.
Phys Rev Lett ; 123(12): 127601, 2019 Sep 20.
Article in English | MEDLINE | ID: mdl-31633948

ABSTRACT

The recently proposed dynamical multiferroic effect describes the generation of magnetization from temporally varying electric polarization. Here, we show that the effect can lead to a magnetic field at moving ferroelectric domain walls, where the rearrangement of ions corresponds to a rotation of ferroelectric polarization in time. We develop an expression for the dynamical magnetic field, and calculate the relevant parameters for the example of 90° and 180° domain walls, as well as for polar skyrmions, in BaTiO_{3}, using a combination of density functional theory and phenomenological modeling. We find that the magnetic field reaches the order of several µT at the center of the wall, and we propose two experiments to measure the effect with nitrogen-vacancy center magnetometry.

9.
Science ; 357(6354): 873-874, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28860373
SELECTION OF CITATIONS
SEARCH DETAIL
...