Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Language
Publication year range
1.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;54(12): e11728, 2021. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1345573

ABSTRACT

A close interaction between basic science and applied medicine is to be expected. Therefore, it is important to measure how far apart the field of cell biology and medicine are. Our approach to estimating the distance between these fields was to compare their vocabularies and to quantify the difference in word repertoire. We compared the vocabulary of the title and abstract of articles available in PubMed in two selected high-impact journals in each field: cell biology, medicine, and translational science. Although each journal has its own editorial policy, we showed that within each field there is a small vocabulary difference between the two journals. We developed a word similarity index that can measure how much journals share a common vocabulary. We found a high similarity index between each cell biology (91%), medical (71-74%), and translational journal (65%). In contrast, the comparison between medicine and biology journals produced low correlation values (22-36%), suggesting that their vocabularies are quite dissimilar. Translational medicine journals had medium similarity values when compared to cell biology journals (52-70%) and medicine journals (27-59%). This approach was also performed in 10-year periods to evaluate the evolution of each field. Using the "onomics" strategy presented here, we observed that differences in vocabulary of basic science and medicine have been increasing over time. Since translational medicine has an intermediate vocabulary, we confirmed that translational medicine is an efficient approach to bridge this gap.

2.
Dev. genes evol. (Print) ; Dev. genes evol. (Print);219(5): 219-234, 2009.
Article in English | Coleciona SUS | ID: biblio-945020

ABSTRACT

Schistosomiasis is a water-borne parasitic illness caused by neoophoran trematodes of the genus Schistosoma. Using classical histological techniques and whole-mount preparations, the present work describes the embryonic development of Schistosoma mansoni eggs in the murine host and compares it with eggs maintained under in vitro conditions. Two pre-embryonic stages occur inside the female worm: the prezygotic stage is characterized by the release of mature oocytes from the female ovary until its fertilization. The zygotic stage encompasses the migration of the zygote through the ootype, where the eggshell is formed, to the uterus. Fully formed eggs are laid still undeveloped, without having suffered any cleavage. In the outside environment, eight embryonic stages can be defined: stage 1 refers to early cleavages and the beginning of yolk fusion. Stage 2 represents late cleavage, with the formation of a stereoblastula and the onset of outer envelope differentiation. Stage 3 is defined by the elongation of the embryonic primordium and the onset of inner envelope formation. At stage 4, the first organ primordia arise. During stages 5 to 7, tissue and organ differentiation occurs (neural mass, epidermis, terebratorium, musculature, and miracidial glands). Stage 7 is characterized by the nuclear condensation of neurons of the central neural mass. Stage 8 refers to the fully formed larva, presenting muscular contraction, cilia, and flame-cell beating. This staging system was compared to a previous classification and could underlie further studies on egg histoproteomics (morphological localizome). The differentiation of embryonic structures and their probable roles in granulomatogenesis are discussed herein.


Subject(s)
Platyhelminths/growth & development , Schistosoma mansoni/growth & development , Schistosomiasis mansoni/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL