Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Membranes (Basel) ; 12(5)2022 May 20.
Article in English | MEDLINE | ID: mdl-35629863

ABSTRACT

We combine renewable and waste materials to produce hydrophobic membranes in the present work. Cellulose nanopaper prepared from paper waste was used as a structural component for the membrane. The pine wax was reclaimed from pine needle extraction waste and can be regarded as a byproduct. The dip-coating and spray-coating methods were comprehensively compared. In addition, the solubility of wax in different solvents is reported, and the concentration impact on coating quality is presented as the change in the contact angle value. The sensile drop method was used for wetting measurements. Spray-coating yielded the highest contact angle with an average of 114°, while dip-coating reached an average value of 107°. Scanning electron microscopy (SEM) was used for an in-depth comparison of surface morphology. It was observed that coating methods yield significantly different microstructures on the surface of cellulose fibers. The wax is characterized by nuclear magnetic resonance (NMR) spectroscopy and differential scanning calorimetry (DSC). Pine wax has a melting temperature of around 80 °C and excellent thermal stability in oxygen, with a degradation peak above 290 °C. Fourier transform infrared spectroscopy (FTIR) was used to identify characteristic groups of components and show the changes on coated nanopaper. Overall, the results of this work yield important insight into wax-coated cellulose nanopapers and a comparison of spray- and dip-coating methods. The prepared materials have a potential application as membranes and packaging materials.

2.
Acta Crystallogr E Crystallogr Commun ; 74(Pt 6): 796-798, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29951232

ABSTRACT

In the title compound, C16H20O4, a new starting compound for the synthesis of various heterocycles, the partially saturated six-membered ring adopts a sofa conformation. An intra-molecular O-H⋯O hydrogen bond is observed in the guaiacol residue. In the crystal, mol-ecules are assembled into a sheet structure parallel to the ab plane via O-H⋯O hydrogen bonds. The hydrogen-bond pattern is described by an R44(28) graph-set motif. The sheets are further linked by C-H⋯O hydrogen bonds into a three-dimensional network.

3.
Acta Crystallogr E Crystallogr Commun ; 72(Pt 4): 522-5, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-27375880

ABSTRACT

The title compound, C22H16N2O2 {systematic name: 3-(4-hy-droxy-phen-yl)-2-[(E)-2-phenyl-ethen-yl]quinazolin-4(3H)-one}, consists of a substituted 2-[(E)-2-aryl-ethen-yl]-3-aryl-quinazolin-4(3H)-one skeleton. The substituents at the ethyl-ene fragment are located in trans positions. The phenyl ring is inclined to the quinazolone ring by 26.44 (19)°, while the 4-hy-droxy-phenyl ring is inclined to the quinazolone ring by 81.25 (8)°. The phenyl ring and the 4-hy-droxy-phenyl ring are inclined to one another by 78.28 (2)°. In the crystal, mol-ecules are connected via O-H⋯O hydrogen bonds, forming a helix along the a-axis direction. The helices are linked by C-H⋯π inter-actions, forming slabs parallel to (001).

4.
Acta Crystallogr E Crystallogr Commun ; 71(Pt 10): 1242-4, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26594416

ABSTRACT

The title compound, C17H21NO4, consists of substituted Meldrum's acid with a [4-(di-ethyl-amino)-phen-yl]methyl-idene fragment attached to the fifth position. The heterocycle assumes a distorted boat conformation. The planar part of heterocycle is almost coplanar with the benzene ring due to the presence of a long conjugated system in the mol-ecule. This leads to the formation of C-H⋯O-type intra-molecular contacts. As a result of the absence of hydrogen-bond donors in the structure, the crystal packing is controlled by van der Waals forces and weak C-H⋯O inter-actions, which associate the mol-ecules into inversion dimers.

5.
Acta Crystallogr C Struct Chem ; 71(Pt 9): 752-8, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26322605

ABSTRACT

C-Alkyl (including C-arylmethyl) derivatives of Meldrum's acids are attractive building blocks in organic synthesis, mainly due to the unusually high acidity of the resulting compounds. Three examples, namely 5-[4-(diethylamino)benzyl]-2,2-dimethyl-1,3-dioxane-4,6-dione, C17H23NO4, (I), 2,2-dimethyl-5-(2,4,6-trimethoxybenzyl)-1,3-dioxane-4,6-dione, C16H20O7, (II), and 5-(4-hydroxy-3,5-dimethoxybenzyl)-2,2-dimethyl-1,3-dioxane-4,6-dione, C15H18O7, (III), have been synthesized, characterized by NMR and IR spectroscopy, and studied by single-crystal X-ray structure analysis. The nature of the different substituents resulted in remarkable differences in both the molecular conformations and the crystal packing arrangements. The presence of a substituent with a basic centre in compound (I) leads to the formation of an inner salt accompanied by drastic changes in the conformation of the 1,3-dioxane-4,6-dione fragment. By virtue of strong N-H···O hydrogen bonds, the residues are assembled into infinite chains with the graph-set descriptor C(10). Compound (II) contains methoxy groups in both the ortho- and para-positions of the arylmethyl fragment. Because of the absence of classical hydrogen-bond donors in this structure, the crystal packing is controlled by van der Waals forces and weak C-H···O interactions. Compound (III) contains methoxy groups in both meta-positions and a hydroxy group in the para-position. Supramolecular tetrameric synthons which comprise hydrogen-bonded dimers associated into tetramers through π-π interactions of overlapping benzene rings were observed.

6.
Angew Chem Int Ed Engl ; 44(26): 3974-4001, 2005 Jun 27.
Article in English | MEDLINE | ID: mdl-15942973

ABSTRACT

The Walden memorial at the Technical University in Riga is pictured in the frontispiece to mark the recent centennial of the Walden inversion. This is a rare public monument to key events from the first era of exploration in stereocontrolled synthesis, and may be the only such monument to use the language of organic chemistry expressed at the molecular level. The reaction of racemic substrates with chiral nucleophiles is one of many methods currently known to achieve kinetic resolution, a phenomenon that ranks as the oldest and most general approach for the synthesis of highly enantioenriched substances. The first nonenzymatic kinetic resolutions as well as the original forms of the Walden inversion were studied in the 1890s. All of these investigations were conducted within the first generation following the demonstration that carbon is tetrahedral, and provided abundant evidence that the principles and importance of enantiocontrolled syntheses were understood. However, a reliable, rapid technique to quantify results and guide the optimization process was still lacking. Many decades passed before this problem was solved by the advent of HPLC and GLPC assays on chiral supports, which stimulated explosive growth in the synthesis of nonracemic substances by kinetic resolution. The Walden monument is accessible to passers-by for hands-on inspection as well as for contemplation and learning. In a similar way, kinetic resolution is experimentally accessible and can be thought-provoking at several levels. We follow the story of kinetic resolution from the early discoveries through fascinating historical milestones and conceptual developments, and close with a focus on modern techniques that maximize efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL
...