Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 397(3): 447-52, 2010 Jul 02.
Article in English | MEDLINE | ID: mdl-20513352

ABSTRACT

Fructose-1,6-bisphosphatase (FBPase) is a key regulatory enzyme of gluconeogenesis. In the yeast Saccharomyces cerevisiae, it is only expressed when cells are grown in medium with nonfermentable carbon sources. Addition of glucose to cells leads to inactivation of FBPase and degradation via the ubiquitin-proteasome system. Polyubiquitination of FBPase is carried out by the Gid complex, a multi-subunit ubiquitin ligase. Using tandem affinity purification and subsequent mass spectrometry we identified the Hsp70 chaperone Ssa1 as a novel interaction partner of FBPase. Studies with the temperature-sensitive mutant ssa1-45(ts) showed that Ssa1 is essential for polyubiquitination of FBPase by the Gid complex. Moreover, we show that degradation of an additional gluconeogenic enzyme, phosphoenolpyruvate carboxykinase, is also affected in ssa1-45(ts) cells demonstrating that Ssa1 plays a general role in elimination of gluconeogenic enzymes.


Subject(s)
Fructose-Bisphosphatase/metabolism , Gluconeogenesis , HSP70 Heat-Shock Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , HSP70 Heat-Shock Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
2.
Mol Biol Cell ; 19(8): 3323-33, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18508925

ABSTRACT

Glucose-dependent regulation of carbon metabolism is a subject of intensive studies. We have previously shown that the switch from gluconeogenesis to glycolysis is associated with ubiquitin-proteasome linked elimination of the key enzyme fructose-1,6-bisphosphatase. Seven glucose induced degradation deficient (Gid)-proteins found previously in a genomic screen were shown to form a complex that binds FBPase. One of the subunits, Gid2/Rmd5, contains a degenerated RING finger domain. In an in vitro assay, heterologous expression of GST-Gid2 leads to polyubiquitination of proteins. In addition, we show that a mutation in the degenerated RING domain of Gid2/Rmd5 abolishes fructose-1,6-bisphosphatase polyubiquitination and elimination in vivo. Six Gid proteins are present in gluconeogenic cells. A seventh protein, Gid4/Vid24, occurs upon glucose addition to gluconeogenic cells and is afterwards eliminated. Forcing abnormal expression of Gid4/Vid24 in gluconeogenic cells leads to fructose-1,6-bisphosphatase degradation. This suggests that Gid4/Vid24 initiates fructose-1,6-bisphosphatase polyubiquitination by the Gid complex and its subsequent elimination by the proteasome. We also show that an additional gluconeogenic enzyme, phosphoenolpyruvate carboxykinase, is subject to Gid complex-dependent degradation. Our study uncovers a new type of ubiquitin ligase complex composed of novel subunits involved in carbohydrate metabolism and identifies Gid4/Vid24 as a major regulator of this E3.


Subject(s)
Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Fungal , Ubiquitin-Protein Ligases/chemistry , Carbohydrate Metabolism , Fructose-Bisphosphatase/chemistry , Gluconeogenesis , Glucose/metabolism , Models, Biological , Mutation , Phosphoenolpyruvate Carboxykinase (ATP)/metabolism , Plasmids/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Structure, Tertiary , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Vesicular Transport Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...