Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Med Image Anal ; 97: 103257, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38981282

ABSTRACT

The alignment of tissue between histopathological whole-slide-images (WSI) is crucial for research and clinical applications. Advances in computing, deep learning, and availability of large WSI datasets have revolutionised WSI analysis. Therefore, the current state-of-the-art in WSI registration is unclear. To address this, we conducted the ACROBAT challenge, based on the largest WSI registration dataset to date, including 4,212 WSIs from 1,152 breast cancer patients. The challenge objective was to align WSIs of tissue that was stained with routine diagnostic immunohistochemistry to its H&E-stained counterpart. We compare the performance of eight WSI registration algorithms, including an investigation of the impact of different WSI properties and clinical covariates. We find that conceptually distinct WSI registration methods can lead to highly accurate registration performances and identify covariates that impact performances across methods. These results provide a comparison of the performance of current WSI registration methods and guide researchers in selecting and developing methods.

2.
Article in English | MEDLINE | ID: mdl-38082977

ABSTRACT

The acquisition of whole slide images is prone to artifacts that can require human control and re-scanning, both in clinical workflows and in research-oriented settings. Quality control algorithms are a first step to overcome this challenge, as they limit the use of low quality images. Developing quality control systems in histopathology is not straightforward, also due to the limited availability of data related to this topic. We address the problem by proposing a tool to augment data with artifacts. The proposed method seamlessly generates and blends artifacts from an external library to a given histopathology dataset. The datasets augmented by the blended artifacts are then used to train an artifact detection network in a supervised way. We use the YOLOv5 model for the artifact detection with a slightly modified training pipeline. The proposed tool can be extended into a complete framework for the quality assessment of whole slide images.Clinical relevance- The proposed method may be useful for the initial quality screening of whole slide images. Each year, millions of whole slide images are acquired and digitized worldwide. Numerous of them contain artifacts affecting the following AI-oriented analysis. Therefore, a tool operating at the acquisition phase and improving the initial quality assessment is crucial to increase the performance of digital pathology algorithms, e.g., early cancer diagnosis.


Subject(s)
Artifacts , Neoplasms , Humans , Image Processing, Computer-Assisted/methods , Algorithms
3.
Sci Rep ; 13(1): 19518, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37945653

ABSTRACT

The analysis of veterinary radiographic imaging data is an essential step in the diagnosis of many thoracic lesions. Given the limited time that physicians can devote to a single patient, it would be valuable to implement an automated system to help clinicians make faster but still accurate diagnoses. Currently, most of such systems are based on supervised deep learning approaches. However, the problem with these solutions is that they need a large database of labeled data. Access to such data is often limited, as it requires a great investment of both time and money. Therefore, in this work we present a solution that allows higher classification scores to be obtained using knowledge transfer from inter-species and inter-pathology self-supervised learning methods. Before training the network for classification, pretraining of the model was performed using self-supervised learning approaches on publicly available unlabeled radiographic data of human and dog images, which allowed substantially increasing the number of images for this phase. The self-supervised learning approaches included the Beta Variational Autoencoder, the Soft-Introspective Variational Autoencoder, and a Simple Framework for Contrastive Learning of Visual Representations. After the initial pretraining, fine-tuning was performed for the collected veterinary dataset using 20% of the available data. Next, a latent space exploration was performed for each model after which the encoding part of the model was fine-tuned again, this time in a supervised manner for classification. Simple Framework for Contrastive Learning of Visual Representations proved to be the most beneficial pretraining method. Therefore, it was for this method that experiments with various fine-tuning methods were carried out. We achieved a mean ROC AUC score of 0.77 and 0.66, respectively, for the laterolateral and dorsoventral projection datasets. The results show significant improvement compared to using the model without any pretraining approach.


Subject(s)
Deep Learning , Humans , Animals , Dogs , Radiography , Databases, Factual , Investments , Knowledge , Supervised Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...