Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
New Phytol ; 234(5): 1817-1831, 2022 06.
Article in English | MEDLINE | ID: mdl-35274313

ABSTRACT

Arbuscular mycorrhizal (AM) symbiosis is accompanied by alterations to root cell metabolism and physiology, and to the pathways of orthophosphate (Pi) entry into the root, which increase with Pi delivery to cortical cells via arbuscules. How AM symbiosis influences the Pi content and Pi response dynamics of cells in the root cortex and epidermis is unknown. Using fluorescence resonance energy transfer (FRET)-based Pi biosensors, we mapped the relative cytosolic and plastidic Pi content of Brachypodium distachyon mycorrhizal root cells, analyzed responses to extracellular Pi and traced extraradical hyphae-mediated Pi transfer to colonized cells. Colonized cortical cells had a higher cytosolic Pi content relative to noncolonized cortical and epidermal cells, while plastidic Pi content was highest in cells at the infection front. Pi application to the entire mycorrhizal root resulted in transient changes in cytosolic Pi that differed in direction and magnitude depending on cell type and arbuscule status; cells with mature arbuscules showed a substantial transient increase in cytosolic Pi while those with collapsed arbuscules showed a decrease. Directed Pi application to extraradical hyphae resulted in measurable changes in cytosolic Pi of colonized cells 18 h after application. Our experiments reveal that cells within a mycorrhizal root vary in Pi content and Pi response dynamics.


Subject(s)
Biosensing Techniques , Brachypodium , Mycorrhizae , Brachypodium/genetics , Brachypodium/metabolism , Gene Expression Regulation, Plant , Mycorrhizae/physiology , Phosphates/metabolism , Plant Proteins/metabolism , Plant Roots/metabolism , Symbiosis/physiology
2.
J Vis ; 22(1): 7, 2022 01 04.
Article in English | MEDLINE | ID: mdl-35024760

ABSTRACT

During visual search, attention is guided by specific features, including shape. Our understanding of shape guidance is limited to specific attributes (closures and line terminations) that do not fully explain the richness of preattentive shape processing. We used a novel genetic algorithm method to explore shape space and to stimulate hypotheses about shape guidance. Initially, observers searched for targets among 12 random distractors defined, in radial frequency space, by the amplitude and phase of 10 radial frequencies. Reaction time (RT) was the measure of "fitness." To evolve toward an easier search task, distractors with faster RTs survived to the next generation, "mated," and produced offspring (new distractors for the next generation of search). To evolve a harder search, surviving distractors were those yielding longer RTs. Within eight generations of evolution, the method succeeds in producing visual searches either harder or easier than the starting search. In radial frequency space, easy distractors evolve amplitude × frequency spectra that are dissimilar to the target, whereas hard distractors evolve spectra that are more similar to the target. This method also works with naturally shaped targets (e.g., rabbit silhouettes). Interestingly, the most inefficient distractors featured a combination of a body and ear distractors that did not resemble the rabbit (visually or in spectrum). Adding extra ears to these distractors did not impact the search spectrally and instead made it easier to confirm a rabbit, once it was found. In general, these experiments show that shapes that are clearly distinct when attended are similar to each other preattentively.


Subject(s)
Algorithms , Attention , Animals , Pattern Recognition, Visual , Rabbits , Reaction Time
SELECTION OF CITATIONS
SEARCH DETAIL
...