Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
Add more filters










Publication year range
1.
Chemistry ; : e202400580, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38838081

ABSTRACT

We report the syntheses of tin(II) salts of the types [L1SnX]SnX3 [L1 = 2,6-{(i-PrO)2(O)P}2C5H3N: 1, X = Cl; 2, X = Br], [L2SnCl]SnCl3 [L2 = 2-{(i-PrO)Ph(O)P}-6-{(i-PrO)2(O)P}C5H3N: 3], [L3SnX]SnX3 [L3 = 2,6-{MeO(O)C}2C5H3N: 4, X = Cl; 5, X = Br], [L4SnX]SnX3[L4 = 2,6-{Et2N(O)C}2C5H3N: 6, X = Cl; 7, X = Br]. These compounds were obtained by addition of SnX2 to the corresponding ligand inducing autoionization of the respective tin(II) halide. The thermal stability of 1, 3, and 4 was elucidated, giving, under ester cleavage and cyclisation, the tin(II) derivatives 8-12. The reaction of [L1SnCl]SnCl3 (1) with W(CO)4(thf)2 afforded the tungsten tetracarbonyl complex [{L1SnCl}{SnCl3}W(CO)4] (13), representing the first example in which a tin(II) stannate anion and a tin(II) stannylium cation simultaneously coordinate to a transition metal centre. The compounds were characterized by single crystal X-ray diffraction analyses and in part by elemental analyses, IR and NMR spectroscopy, electrospray ionization mass spectrometry. DFT calculations accompany the experimental work.

2.
EJNMMI Radiopharm Chem ; 8(1): 25, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37819534

ABSTRACT

BACKGROUND: The positron emitting isotope fluorine-18 (18F) possesses almost ideal physicochemical properties for the development of radiotracers for diagnostic molecular imaging employing positron emission tomography (PET). 18F in its nucleophilic anionic 18F- form is usually prepared by bombarding an enriched 18O water target with protons of various energies between 5 and 20 MeV depending on the technical specifications of the cyclotron. Large thick-target yields between 5 and 14 GBq/µA can be obtained, enough to prepare large batches of radiotracers capable to serve a considerable contingent of patients (50 + per clinical batch). The overall yield of the radiotracer however depends on the efficiency of the 18F labeling chemistry. The Silicon Fluoride Acceptor chemistry (SiFA) has introduced a convenient and highly efficient way to provide clinical peptide-based 18F-radiotracers in a kit-like procedure matching the convenience of 99mTc radiopharmaceuticals. MAIN BODY: A radiotracer's clinical success primarily hinges on whether its synthesis can be automated. Due to its simplicity, the SiFA chemistry, which is based on isotopic exchange (18F for 19F), does not only work in a manual setup but has been proven to be automatable, yielding large batches of 18F-radiotracers of high molar activity (Am). The production of SiFA radiotracer can be centralized and the radiopharmaceutical be distributed via the "satellite" principle, where one production facility economically serves multiple clinical application sites. Clinically validated tracers such as [18F]SiTATE and [18F]Ga-rhPSMA-7/-7.3 have been synthesized in an automated synthesis unit under good manufacturing practice conditions and used in large patient cohorts. Communication of common guidelines and practices is warranted to further the dissemination of SiFA radiopharmaceuticals and to give easy access to this technology. CONCLUSION: This current review highlights the most recent achievements in SiFA radiopharmaceutical automation geared towards large batch production for clinical application. Best practice advice and guidance towards a facilitated implementation of the SiFA technology into new and already operating PET tracer production facilities is provided. A brief outlook spotlights the future potential of SiFA radiochemistry within the landscape of non-canonical labeling chemistries.

3.
Angew Chem Int Ed Engl ; 62(50): e202309002, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37850849

ABSTRACT

The ring-opening Si-fluorination of a variety of azasilole derivatives cyclo-1-(iPr2 Si)-4-X-C6 H3 -2-CH2 NR (4: R=2,6-iPr2 C6 H3 , X=H; 4 a: R=2,4,6-Me3 C6 H2 , X=H; 9: R=2,6-iPr2 C6 H3 , X=tBuMe2 SiO; 10: R=2,6-iPr2 C6 H3 , X=OH; 13: R=2,6-iPr2 C6 H3 , X=HCCCH2 O; 22: R=2,6-iPr2 C6 H3 , X=tBuMe2 SiCH2 O) with different 19 F-fluoride sources was studied, optimized and the experience gained was used in a translational approach to create a straightforward 18 F-labelling protocol for the azasilole derivatives [18 F]6 and [18 F]14. The latter constitutes a potential clickable CycloSiFA prosthetic group which might be used in PET tracer development using Cu-catalysed triazole formation. Based on our findings, CycloSiFA has the potential to become a new entry into non-canonical labelling methodologies for radioactive PET tracer development.

5.
Eur J Nucl Med Mol Imaging ; 50(11): 3390-3399, 2023 09.
Article in English | MEDLINE | ID: mdl-37358620

ABSTRACT

BACKGROUND: Somatostatin-receptor (SSTR)-targeted PET/CT provides important clinical information in addition to standard imaging in meningioma patients. [18F]SiTATE is a novel, 18F-labeled SSTR-targeting peptide with superior imaging properties according to preliminary data. We provide the first [18F]SiTATE PET/CT data of a large cohort of meningioma patients. METHODS: Patients with known or suspected meningioma undergoing [18F]SiTATE PET/CT were included. Uptake intensity (SUV) of meningiomas, non-meningioma lesions, and healthy organs were assessed using a 50% isocontour volume of interest (VOI) or a spherical VOI, respectively. Also, trans-osseous extension on PET/CT was assessed. RESULTS: A total of 107 patients with 117 [18F]SiTATE PET/CT scans were included. Overall, 231 meningioma lesions and 61 non-meningioma lesions (e.g., post-therapeutic changes) were analyzed. Physiological uptake was lowest in healthy brain tissue, followed by bone marrow, parotid, and pituitary (SUVmean 0.06 ± 0.04 vs. 1.4 ± 0.9 vs. 1.6 ± 1.0 vs. 9.8 ± 4.6; p < 0.001). Meningiomas showed significantly higher uptake than non-meningioma lesions (SUVmax 11.6 ± 10.6 vs. 4.0 ± 3.3, p < 0.001). Meningiomas showed significantly higher uptake than non-meningioma lesions (SUVmax 11.6±10.6 vs. 4.0±3.3, p<0.001). 93/231 (40.3%) meningiomas showed partial trans-osseous extension and 34/231 (14.7%) predominant intra-osseous extension. 59/231 (25.6%) meningioma lesions found on PET/CT had not been reported on previous standard imaging. CONCLUSION: This is the first PET/CT study using an 18F-labeled SSTR-ligand in meningioma patients: [18F]SiTATE provides extraordinary contrast in meningioma compared to healthy tissue and non-meningioma lesions, which leads to a high detection rate of so far unknown meningioma sites and osseous involvement. Having in mind the advantageous logistic features of 18F-labeled compared to 68Ga-labeled compounds (e.g., longer half-life and large-badge production), [18F]SiTATE has the potential to foster a widespread use of SSTR-targeted imaging in neuro-oncology.


Subject(s)
Meningeal Neoplasms , Meningioma , Organometallic Compounds , Humans , Positron Emission Tomography Computed Tomography , Meningioma/diagnostic imaging , Meningioma/pathology , Receptors, Somatostatin , Peptides , Meningeal Neoplasms/diagnostic imaging
6.
Inorg Chem ; 62(20): 7662-7680, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37156016

ABSTRACT

The syntheses of the racemic amino alcohol rac-N(CH2CMe2OH)(CMe2CH2OH)(CH2CHMeOH) (L22'1*H3, 2) and its representative N(CH2CMe2OH)(CMe2CH2OH)(CH2C(R)HMeOH) (L22'1RH3, 3) with the stereogenic carbon center being R-configured are reported. Also reported are the stannatranes L22'1*SnOt-Bu (4) L22'1RSnOt-Bu (6) and germatranes L22'1*GeOEt (5) and L22'1RGeOEt (7) as well as the trinuclear tin oxocluster [(µ3-O)(µ3-O-t-Bu){SnL22'1R}3] (8). NMR and IR spectroscopy, electrospray ionization mass spectrometry (ESI MS), and single crystal X-ray diffraction analysis characterize these compounds. Computational studies accompany the experimental work and help understand the diastereoselectivity observed in the course of the metallatrane syntheses.

7.
Front Oncol ; 13: 992316, 2023.
Article in English | MEDLINE | ID: mdl-36793617

ABSTRACT

Purpose: Somatostatin analogues (SSA) are frequently used in the treatment of neuroendocrine tumours. Recently, [18F]SiTATE entered the field of somatostatin receptor (SSR) positron emission tomography (PET)/computed tomography (CT) imaging. The purpose of this study was to compare the SSR-expression of differentiated gastroentero-pancreatic neuroendocrine tumours (GEP-NET) measured by [18F]SiTATE-PET/CT in patients with and without previous treatment with long-acting SSAs to evaluate if SSA treatment needs to be paused prior to [18F]SiTATE-PET/CT. Methods: 77 patients were examined with standardised [18F]SiTATE-PET/CT within clinical routine: 40 patients with long-acting SSAs up to 28 days prior to PET/CT examination and 37 patients without pre-treatment with SSAs. Maximum and mean standardized uptake values (SUVmax and SUVmean) of tumours and metastases (liver, lymphnode, mesenteric/peritoneal and bones) as well as representative background tissues (liver, spleen, adrenal gland, blood pool, small intestine, lung, bone) were measured, SUV ratios (SUVR) were calculated between tumours/metastases and liver, likewise between tumours/metastases and corresponding specific background, and compared between the two groups. Results: SUVmean of liver (5.4 ± 1.5 vs. 6.8 ± 1.8) and spleen (17.5 ± 6.8 vs. 36.7 ± 10.3) were significantly lower (p < 0.001) and SUVmean of blood pool (1.7 ± 0.6 vs. 1.3 ± 0.3) was significantly higher (p < 0.001) in patients with SSA pre-treatment compared to patients without. No significant differences between tumour-to-liver and specific tumour-to-background SUVRs were observed between both groups (all p > 0.05). Conclusion: In patients previously treated with SSAs, a significantly lower SSR expression ([18F]SiTATE uptake) in normal liver and spleen tissue was observed, as previously reported for 68Ga-labelled SSAs, without significant reduction of tumour-to-background contrast. Therefore, there is no evidence that SSA treatment needs to be paused prior to [18F]SiTATE-PET/CT.

8.
Dalton Trans ; 52(9): 2749-2761, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36749616

ABSTRACT

A series of novel non-symmetric neutral N,N',O-chelating ligands derived from the α-iminopyridine 2-(C(R1)N(C6H3-2,6-iPr2))-6-(R2R3PO)C5H3N (L1: R1 = H, R2 = R3 = Ph; L2: R1 = Me, R2 = R3 = Ph; L3: R1 = H; R2 = Ph, R3 = EtO; L4: R1 = Me, R2 = Ph, R3 = EtO; L5: R1 = H, R2 = R3 = iPrO; L6: R1 = Me, R2 = R3 = iPrO) were synthesized. Ligands L1-6 were reacted with SnCl2 and Sn(OTf)2 with the aim of studying the influence of different R2R3PO functional groups on the Lewis base mediated ionization of SnCl2 and Sn(OTf)2. While all ligands L1-6 provided the corresponding ionic tin(II) complexes [L1-6 → SnCl]+[SnCl3]- (1-6), only ligands L1, L4 and L6 were able to stabilize tin(II) dications [L1,4,6 → Sn(H2O)][OTf]2 (7-9). The auto-ionized compounds [L3-6 → SnCl]+[SnCl3]- possessing ethylphenyl phosphinate and diisopropylphosphite substituents undergo elimination of EtCl and iPrCl, respectively, yielding compounds 10-13. These can either be interpreted as neutral tin(II)phosphinate chloride (10, 11) and tin(II)phosphonate chloride (12, 13), respectively, containing Sn-O and Sn-Cl bonds, and a PO → SnCl2 interaction, or as zwitterionic compounds, where the positive charge of the central tin atom is compensated by an [OSnCl2]- anion. Finally, DFT studies were performed to better understand the steric and electronic properties of the ligands L1-6 as well as the nature of the bonds in the resulting products, with a particular focus on complexes 10-13.

9.
Chemistry ; 28(58): e202201447, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-35819355

ABSTRACT

The sequence of reactions of the phosphorus-containing aryllithium compound 5-t-Bu-1,3-[(P(O)(O-i-Pr)2 ]2 C6 H2 Li (ArLi) with Ph2 PCl, KMnO4 , elemental sulfur and elemental selenium, respectively, gave the aryldiphenylphosphane chalcogenides 5-t-Bu-1,3-[(P(O)(O-i-Pr)2 ]2 C6 H2 P(E)Ph2 (1, E=O; 2, E=S; 3, E=Se). Compound 1 partially hydrolysed giving [5-t-Bu-1-{(P(O)(O-i-Pr)2 }-3-{(P(O)(OH)2 }C6 H2 ]P(O)Ph2 (4). The reaction of ArLi with PhPCl2 provided the benzoxaphosphaphosphole [1(P), 3(P)-P(O)(O-i-Pr)OPPh-6-t-Bu-4-P(O)(O-i-Pr)2 ]C6 H2 P (5i) as a mixture of the two diastereomers. The oxidation of 5i with elemental sulfur gave the benzoxaphosphaphosphole sulfide [1(P), 3(P)-P(O)(O-i-Pr)OP(S)Ph-6-t-Bu-4-P(O)(O-i-Pr)2 ]C6 H2 (5) as pair of enantiomers P1(R), P3(S)/P1(S), P3(R) of the diastereomer (RS/SR)-5 (5b). The aryldiphenylphosphane 5-t-Bu-1,3-[(P(O)(O-i-Pr)2 ]2 C6 H2 PPh2 (6) was obtained from the reaction of the corresponding aryldiphenylphosphane sulfide 2 with either sodium hydride, NaH, or disodium iron tetracarbonyl, Na2 Fe(CO)4 . The oxidation of the aryldiphenylphosphane 6 with elemental iodine and subsequent hydrolysis yielded the aryldiphenyldioxaphosphorane 9-t-Bu-2,6-(OH)-4,4-Ph2 -3,5-O2 -2,6-P2 -4λ5 -P-[5.3.1.0]-undeca-1(10),7(11),8-triene (7). Both of its diastereomers, (RR/SS)-7 (7a) and (RS/SR)-7 (7b), were separated as their chloroform and i-propanol solvates, 7a⋅2CHCl3 and 7b⋅i-PrOH, respectively. DFT calculations accompanied the experimental work.

10.
Pharmaceuticals (Basel) ; 14(7)2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34358127

ABSTRACT

The incorporation of silicon fluoride acceptor (SiFA) moieties into a variety of molecules, such as peptides, proteins and biologically relevant small molecules, has improved the generation of 18F-radiopharmaceuticals for medical imaging. The efficient isotopic exchange radiofluorination process, in combination with the enhanced [18F]SiFA in vivo stability, make it a suitable strategy for fluorine-18 incorporation. This review will highlight the clinical applicability of [18F]SiFA-labeled compounds and discuss the significant radiotracers currently in clinical use.

11.
Chemistry ; 27(48): 12276-12283, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34076334

ABSTRACT

Hydrolysis reactions of di- and trinuclear organotin halides yielded large novel cage compounds containing Sn-O-Sn bridges. The molecular structures of two octanuclear tetraorganodistannoxanes showing double-ladder motifs, viz., [{Me3 SiCH2 (Cl)SnCH2 YCH2 Sn(OH)CH2 SiMe3 }2 (µ-O)2 ]2 [1, Y=p-(Me)2 SiC6 H4 -C6 H4 Si(Me)2 ] and [{Me3 SiCH2 (I)SnCH2 YCH2 Sn(OH)CH2 SiMe3 }2 (µ-O)2 ]2 ⋅0.48 I2 [2⋅0.48 I2 , Y=p-(Me)2 SiC6 H4 -C6 H4 Si(Me)2 ], and the hexanuclear cage-compound 1,3,6-C6 H3 (p-C6 H4 Si(Me)2 CH2 Sn(R)2 OSn(R)2 CH2 Si(Me)2 C6 H4 -p)3 C6 H3 -1,3,6 (3, R=CH2 SiMe3 ) are reported. Of these, the co-crystal 2⋅0.48 I2 exhibits the largest spacing of 16.7 Šreported to date for distannoxane-based double ladders. DFT calculations for the hexanuclear cage and a related octanuclear congener accompany the experimental work.

12.
Eur J Nucl Med Mol Imaging ; 48(11): 3571-3581, 2021 10.
Article in English | MEDLINE | ID: mdl-33928401

ABSTRACT

PURPOSE: Radiolabelled somatostatin analogues targeting somatostatin receptors (SSR) are well established for combined positron emission tomography/computer tomography (PET/CT) imaging of neuroendocrine tumours (NET). [18F]SiTATE has recently been introduced showing high image quality, promising clinical performance and improved logistics compared to the clinical reference standard 68Ga-DOTA-TOC. Here we present the first dosimetry and optimal scan time analysis. METHODS: Eight NET patients received a [18F]SiTATE-PET/CT (250 ± 66 MBq) with repeated emission scans (10, 30, 60, 120, 180 min after injection). Biodistribution in normal organs and SSR-positive tumour uptake were assessed. Dosimetry estimates for risk organs were determined using a combined linear-monoexponential model, and by applying 18F S-values and reference target masses for the ICRP89 adult male or female (OLINDA 2.0). Tumour-to-background ratios were compared quantitatively and visually between different scan times. RESULTS: After 1 h, normal organs showed similar tracer uptake with only negligible changes until 3 h post-injection. In contrast, tracer uptake by tumours increased progressively for almost all types of metastases, thus increasing tumour-to-background ratios over time. Dosimetry resulted in a total effective dose of 0.015 ± 0.004 mSv/MBq. Visual evaluation revealed no clinically relevant discrepancies between later scan times, but image quality was rated highest in 60 and 120 min images. CONCLUSION: [18F]SiTATE-PET/CT in NET shows overall high tumour-to-background ratios from 60 to 180 min after injection and an effective dose comparable to 68Ga-labelled alternatives. For clinical use of [18F]SiTATE, the best compromise between image quality and tumour-to-background contrast is reached at 120 min, followed by 60 min after injection.


Subject(s)
Neuroendocrine Tumors , Positron Emission Tomography Computed Tomography , Adult , Computers , Female , Humans , Male , Neuroendocrine Tumors/diagnostic imaging , Positron-Emission Tomography , Radiometry , Tissue Distribution
13.
Clin Nucl Med ; 46(8): 667-668, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-33782306

ABSTRACT

ABSTRACT: PET using 68Ga-labeled somatostatin receptor (SSTR) ligands adds significant information in meningioma patients. 18F-SiTATE is a novel, 18F-labeled SSTR-targeting peptide with remarkable imaging properties. Here, we present a 72-year-old woman with falx meningioma and transosseous extension. 18F-SiTATE PET/CT was performed 12 months after the previous 68Ga-DOTATOC PET/CT with comparable quantitative uptake and very good spatial resolution. So far, the widespread use of SSTR ligands for NET and meningioma imaging is hampered by cost-intensive 68Ge/68Ga generators, low activity amounts, lower spatial resolution, and short half-life. 18F-SiTATE might foster widespread use of SSTR ligands, overcoming the shortcomings of 68Ga-labeled ligands.


Subject(s)
Meningeal Neoplasms/diagnostic imaging , Meningioma/diagnostic imaging , Meningioma/metabolism , Positron Emission Tomography Computed Tomography , Receptors, Somatostatin/metabolism , Aged , Female , Fluorine Radioisotopes/chemistry , Humans , Meningeal Neoplasms/metabolism
14.
Nat Protoc ; 15(12): 3827-3843, 2020 12.
Article in English | MEDLINE | ID: mdl-33230332

ABSTRACT

Here, we describe an extension of our silicon fluoride acceptor (SiFA) protocol for 18F-labeling of peptides that addresses challenges associated with preparing a clinical-grade (Tyr3)-octreotate (TATE) tracer for diagnosis of neuroendocrine tumors (NETs). After several iterations of protocol optimization (e.g., finding the optimal pH at which the isotopic exchange (IE) reaction produces high radiochemical yields (RCYs)), the SiFA technology achieved clinical applicability, as showcased by radiosynthesis of [18F]SiFAlin-TATE ([18F]SiTATE), the first SiFA peptide used in the clinical diagnosis of NETs. The TATE peptide binds to somatostatin receptors associated with NETs. Radiolabeled TATE derivatives are routinely applied in clinical oncological PET imaging. The (SiFA) 18F-labeling technology is based on the IE of a 19F atom for a radioactive 18F atom, a highly efficient labeling reaction under mild conditions. The 19F is part of a biomolecule bearing the SiFA building block, composed of a central silicon (Si) atom, a 19F atom connected to the Si atom, and two Si-bound tert-butyl groups. The IE proceeds through a penta-coordinate bipyramidal intermediate, followed by elimination of non-radioactive 19F, yielding the labeled compound in high RCYs at room temperature (22 °C). The simplicity and lack of side-product formation of this approach enable a one-step, kit-like preparation of structurally complex and unprotected radiopharmaceuticals. Compounds such as peptides used for tumor imaging in nuclear medicine can be 18F-labeled without the need for complex purification protocols. [18F]SiTATE can be synthesized within 30 min in preparative RCYs of 42%, radiochemical purity of >97% and high molar activity of 60 GBq/µmol.


Subject(s)
Fluorides/chemistry , Fluorides/chemical synthesis , Fluorine Radioisotopes/chemistry , Neuroendocrine Tumors/diagnostic imaging , Peptides, Cyclic/chemistry , Positron-Emission Tomography , Radiochemistry/methods , Silicon Compounds/chemistry , Silicon Compounds/chemical synthesis , Chemistry Techniques, Synthetic , Humans , Isotope Labeling
15.
Angew Chem Int Ed Engl ; 59(52): 23892-23898, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-32964645

ABSTRACT

The syntheses of the novel silicon-bridged tris(tetraorganotin) compounds MeSi(CH2 SnPh2 R)3 (2, R=Ph; 5, R=Me3 SiCH2 ) and their halogen-substituted derivatives MeSi(CH2 SnPh(3-n) In )3 (3, n=1; 4, n=2) and MeSi(CH2 SnI2 R)3 (6, R=Me3 SiCH2 ) are reported. The reaction of compound 4 with di-t-butyltin oxide (t-Bu2 SnO)3 gives the oktokaideka-nuclear (18-nuclear) molecular diorganotin oxide [MeSi(CH2 SnPhO)3 ]6 (7) while the reaction of 6 with sodium hydroxide, NaOH, provides the trikonta-nuclear (30-nuclear) molecular diorganotin oxide [MeSi(CH2 SnRO)3 ]10 (8, R=Me3 SiCH2 ). Both 7 and 8 show belt-like ladder-type macrocyclic structures and are by far the biggest molecular diorganotin oxides reported to date. The compounds have been characterized by elemental analyses, electrospray mass spectrometry (ESI-MS), NMR spectroscopy, 1 H DOSY NMR spectroscopy (7), IR spectroscopy (7, 8), and single-crystal X-ray diffraction analysis (2, 7, 8).

16.
Nucl Med Biol ; 88-89: 86-95, 2020.
Article in English | MEDLINE | ID: mdl-32828007

ABSTRACT

INTRODUCTION: [18F]SiTATE (formerly known as [18F]SiFAlin-TATE) was recently introduced as a highly promising imaging agent for the diagnosis of well-differentiated neuroendocrine tumors (NET) using positron emission tomography/computed tomography (PET/CT). A high tumor uptake and excellent image quality, the straightforward labeling approach, as well as the economic and logistic advantages of 18F- over 68Ga-labeled compounds predestinate [18F]SiTATE to become a potential new clinical reference standard. A novel state-of-the-art methodology of automated radiopharmaceutical production is required to establish [18F]SiTATE in clinical routine. This work illustrates the development of a novel synthesis procedure of [18F]SiTATE on an automated synthesis unit (ASU) and the clinical applicability of the tracer in human NET imaging. METHODS: A new synthesis protocol was generated for the production of [18F]SiTATE on the Scintomics GRP™ platform for clinical NET imaging. The synthesis was carried out according to common Good Manufacturing Practice (GMP) guidelines including all quality control measurements. To confirm utility, clinical batches (n = 3) were produced and applied to six patients diagnosed with NET. RESULTS: [18F]SiTATE was obtained in 54 ± 4% (n = 3) non-decay corrected radiochemical yield (RCY), with a radiochemical purity of 96.3 ± 0.1% and a molar activity (Am) of 472 ± 45 GBq/µmol (n = 3). Quality control measurements always met the local release criteria. All specifications were taken or adapted from the Ph.Eur. regulations. PET/CT imaging with [18F]SiTATE produced on the GRP™ module confirmed the expected high image quality. The in vivo distribution pattern and excellent tumor to non-tumor contrast observed, matched the quality of the manually prepared [18F]SiTATE batches. CONCLUSIONS: The automated manufacture of [18F]SiTATE was developed using the Scintomics GRP™ platform. The high quality of the radiotracer matched stringent quality control requirements adhering to common GMP guidelines, and its clinical applicability was confirmed by human PET/CT investigations. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE: The automated process for the manufacture of [18F]SiTATE described herein represents an important contribution to make [18F]SiTATE routinely accessible for its use in clinical NET diagnosis.


Subject(s)
Fluorine Radioisotopes/metabolism , Neuroendocrine Tumors/pathology , Pancreatic Neoplasms/pathology , Positron Emission Tomography Computed Tomography/methods , Radiopharmaceuticals/metabolism , Receptors, Somatostatin/metabolism , Adult , Aged , Automation , Humans , Middle Aged , Neuroendocrine Tumors/diagnostic imaging , Neuroendocrine Tumors/metabolism , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/metabolism
17.
Inorg Chem ; 58(7): 4244-4252, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30860360

ABSTRACT

The syntheses of the novel stannatranes N(CH2CMe2O)3Sn-(1 S)-(-)-OC(O)C(OMe)(CF3)(C6H5), 1( S, Δ), and N(CH2CMe2O)3Sn-(1 R)-(+)-OC(O)C(OMe)(CF3)(C6H5), 2( R, Λ), and germatranes N(CH2CMe2O)3Ge-(1 S)-(-)-OC(O)C(OMe)(CF3)(C6H5), 3( S, Δ), and N(CH2CMe2O)3Ge-(1 R)-(+)-OC(O)C(OMe)(CF3)(C6H5), 4( R, Λ) (with 1, S, Δ-configured/2, R, Λ-configured and 3, S, Δ-configured/4, R, Λ-configured being pairs of enantiomers) are reported. The compounds were characterized by NMR and IR spectroscopy, electrospray ionization mass spectrometry, and single crystal X-ray diffraction analysis. The epimerization via Λ â‡Œ Δ ring flip of the enantiomeric stannatrane pair 1( S, Δ)/2( R, Λ) was investigated by NMR experiments at variable temperatures and density functional theory (DFT) calculations.

18.
Chemistry ; 24(72): 19266-19279, 2018 Dec 20.
Article in English | MEDLINE | ID: mdl-30315740

ABSTRACT

The syntheses of amino alcohols MeN(CH2 CH2 CMe2 OH)2 (1), MeN(CMe2 CH2 OH)(CH2 CMe2 OH) (2), MeN(CH2 CH2 CH2 OH)(CH2 CMe2 OH) (3), MeN(CH2 CH2 CMe2 OH)(CH2 CMe2 OH) (4), MeN(CH2 CH2 CMe2 OH)(CH2 CH2 OH) (5), and MeN(CH2 CH2 OH) (CH2 CH2 CH2 OH) (6) as well as spirocyclic tin(IV) alkoxides spiro-[nBuN(CH2 CMe2 O)2 ]2 Sn (7), spiro-[MeN(CH2 CH2 CMe2 O)2 ]2 Sn (8), spiro-[para-FC6 H4 N (CH2 CMe2 O)2 ]2 Sn (9), spiro-[MeN(CMe2 CH2 O)(CH2 CMe2 O)]2 Sn (10), spiro-[MeN(CH2 CH2 CH2 O)(CH2 CMe2 O)]2 Sn (11), spiro-[MeN(CH2 CH2 CMe2 O)(CH2 CMe2 O)]2 Sn (12), spiro-[MeN(CH2 CH2 CMe2 O)(CH2 CH2 O)]2 Sn (13) and spiro-[MeN(CH2 CH2 O)(CH2 CH2 CH2 O)]2 Sn (14) are reported. The compounds were characterized by 1 H, 13 C (1-14) and 119 Sn (7-14) NMR and IR spectroscopy, EIMS and single-crystal XRD (2, 7-10 and 13, 14). Graph-set analyses were performed for compounds [(MeNH(CMe2 CH2 OH)(CH2 CMe2 OH)][HC(O)O] (2 a) and 2. The coordination environment about the tin(IV) centre of the spirocyclic compounds and their possible stereoisomers were analysed by DFT calculations (spiro-[MeN(CH2 CMe2 O)2 ]2 Sn, 8-10 and 13).

19.
Chemistry ; 24(18): 4547-4551, 2018 Mar 26.
Article in English | MEDLINE | ID: mdl-29451343

ABSTRACT

Di- and trinuclear organotin(IV) complexes, in which the metal atoms are separated by large aromatic connectors, are useful building blocks for self-assembly. This is demonstrated by the preparation of [1+1], [2+2], and [2+3] macrocyclic and cage-type structures in combination with organic aromatic dicarboxylates. The linkage of the metal atoms by organic binders and the option of varying the number of reactive M-X sites generate versatile building blocks enabling molecular tectonics instead of the node-based strategy generally employed in metallo-supramolecular self-assembly.

20.
Chemistry ; 24(21): 5551-5561, 2018 Apr 11.
Article in English | MEDLINE | ID: mdl-29383765

ABSTRACT

Syntheses and molecular structures of the dimeric tin-platinum complex [LSnPtCl2 (SMe2 )]2 (2), the tin-platinum clusters [{LSnPtCl(SMe2 )}2 SnCl2 )] (3) and [(LSn)3 (PtCl2 )(PtClSnCl)(LSnOHCl)] (6) (L=MeN(CH2 CMe2 O- )2 ), and of the unprecedented tin(II) aminoalkoxide-tin oxide chloride complex [O(SnCl)2 ⋅(SnL)2 ] (5) are reported. The compounds were characterized by NMR spectroscopy (1 H, 13 C, 119 Sn, 195 Pt), 119 Sn Mössbauer spectroscopy (1-3, 6), electrospray ionization mass spectrometry, elemental analyses, and single-crystal X-ray diffraction analyses (2⋅CH2 Cl2 , 3⋅2 C4 H8 O, 5, 6⋅3CH2 Cl2 ). The tin(II) aminoalkoxide [MeN(CH2 CMe2 O)2 Sn]2 (1) behaves like a neutral ligand, inserts into a Pt-Cl bond, or is involved in rearrangement reactions with the different behavior occurring even within one compound (3, 6). DFT calculations show that the tin-platinum compounds behave like electronic chameleons.

SELECTION OF CITATIONS
SEARCH DETAIL
...