Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 52(11): 3308-3314, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36785885

ABSTRACT

A number of stable group 6 metal complexes bearing 2,4,6-oxy functionalised 1,3,5-triphosphinines, phosphorus containing heterocyclic ligands with a central C3P3 core, were synthesised such that a complete series of [M{P3C3(OX)3}(CO)3] compounds is obtained [M = Cr(0), Mo(0), W(0); X = H, SitBuPh2, B(ipc)2]. In all complexes, the triphosphinine coordinates in a η6-binding mode via the delocalized 6π-system of the ring. The ligand properties can be tuned by changing the substituent on the oxygen centre. The π-electron accepting properties of the ligand increases in the following order: P3C3(OH)3 < P3C3(OSitBuPh2)3 < P3C3(OB(ipc)2)3. This trend is reflected in the structures determined by X-ray crystallography, and the ν(CO) stretching frequencies determined by IR spectroscopy. The collected data raise questions with respect to the frequently made assumption that phosphinines act as stronger π-acceptors with respect to arenes and thereby deplete electron density at the metal centres. With P3C3(OH)3 as an η6-coordinated ligand further molecules can be coordinated in the second coordination sphere via hydrogen bonds, which may be of interest for the construction of coordination polymers.

2.
Angew Chem Int Ed Engl ; 60(48): 25372-25380, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34510678

ABSTRACT

The nitrogen oxides NO2 , NO, and N2 O are among the most potent air pollutants of the 21st century. A bimetallic RhI -PtII complex containing an especially designed multidentate phosphine olefin ligand is capable of catalytically detoxifying these nitrogen oxides in the presence of hydrogen to form water and dinitrogen as benign products. The catalytic reactions were performed at room temperature and low pressures (3-4 bar for combined nitrogen oxides and hydrogen gases). A turnover number (TON) of 587 for the reduction of nitrous oxide (N2 O) to water and N2 was recorded, making these RhI -PtII complexes the best homogeneous catalysts for this reaction to date. Lower TONs were achieved in the conversion of nitric oxide (NO, TON=38) or nitrogen dioxide (NO2 , TON of 8). These unprecedented homogeneously catalyzed hydrogenation reactions of NOx were investigated by a combination of multinuclear NMR techniques and DFT calculations, which provide insight into a possible reaction mechanism. The hydrogenation of NO2 proceeds stepwise, to first give NO and H2 O, followed by the generation of N2 O and H2 O, which is then further converted to N2 and H2 O. The nitrogen-nitrogen bond-forming step takes place in the conversion from NO to N2 O and involves reductive dimerization of NO at a rhodium center to give a hyponitrite (N2 O2 2- ) complex, which was detected as an intermediate.

3.
Chem Sci ; 10(34): 7937-7945, 2019 Sep 14.
Article in English | MEDLINE | ID: mdl-31673319

ABSTRACT

Supporting two metal binding sites by a tailored polydentate trop-based (trop = 5H-dibenzo[a,d]cyclohepten-5-yl) ligand yields highly unsymmetric homobimetallic rhodium(i) complexes. Their reaction with hydrogen rapidly forms Rh hydrides that undergo an intramolecular semihydrogenation of two C[triple bond, length as m-dash]C bonds of the trop ligand. This reaction is chemoselective and converts C[triple bond, length as m-dash]C bonds to a bridging carbene and an olefinic ligand in the first and the second semihydrogenation steps, respectively. Stabilization by a bridging diphosphine ligand allows characterization of a Rh hydride species by advanced NMR techniques and may provide insight into possible elementary steps of H2 activation by interfacial sites of heterogeneous Rh/C catalysts.

4.
Angew Chem Int Ed Engl ; 55(39): 11999-2002, 2016 09 19.
Article in English | MEDLINE | ID: mdl-27557780

ABSTRACT

We report the synthesis of a series of ruthenium complexes supported by the phosphine olefin ligand tropPPh2 (trop=5-H-dibenzo-[a,d]cyclohepten-5-yl) in the oxidation states 0, +I, and +II, formed via successive one-electron oxidization steps from Ru(0) (tropPPh2 )2 . The bidentate character of the tropPPh2 ligand and its steric hindrance force the complexes to adopt uncommon geometries, which were investigated by X-ray diffraction analysis. EPR data of the mononuclear Ru(I) complex reveal couplings of the unpaired spin with the ruthenium and two phosphorus nuclei, as well as the olefinic protons which show that the spin is mainly localized on the Ru(I) center.

SELECTION OF CITATIONS
SEARCH DETAIL
...