Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 4(1): 349-57, 2010 Jan 26.
Article in English | MEDLINE | ID: mdl-19947647

ABSTRACT

We present a theoretical and experimental study involving the sensing characteristics of wavelength-interrogated plasmonic sensors based on surface plasmon polaritons (SPP) in planar gold films and on localized surface plasmon resonances (LSPR) of single gold nanorods. The tunability of both sensing platforms allowed us to analyze their bulk and surface sensing characteristics as a function of the plasmon resonance position. We demonstrate that a general figure of merit (FOM), which is equivalent in wavelength and energy scales, can be employed to mutually compare both sensing schemes. Most interestingly, this FOM has revealed a spectral region for which the surface sensitivity performance of both sensor types is optimized, which we attribute to the intrinsic dielectric properties of plasmonic materials. Additionally, in good agreement with theoretical predictions, we experimentally demonstrate that, although the SPP sensor offers a much better bulk sensitivity, the LSPR sensor shows an approximately 15% better performance for surface sensitivity measurements when its FOM is optimized. However, optimization of the substrate refractive index and the accessibility of the relevant molecules to the nanoparticles can lead to a total 3-fold improvement of the FOM in LSPR sensors.


Subject(s)
Nanotechnology , Surface Plasmon Resonance/methods , Electric Impedance , Glass/chemistry , Gold/chemistry , Models, Theoretical , Nanotubes/chemistry , Reproducibility of Results
2.
J Am Chem Soc ; 125(48): 14925-33, 2003 Dec 03.
Article in English | MEDLINE | ID: mdl-14640670

ABSTRACT

In this paper, we elucidate the vibrational response of cylindrical nanorods to ultrafast laser-induced heating. A theoretical analysis of the expected behavior is first presented. This analysis predicts that both extensional and breathing vibrational modes of the rods should be excited by laser-induced heating. Analytical formulas are derived assuming that the heating/expansion process is instantaneous, and that the lengths of the rods are much greater than their radii. These results show that the breathing mode dominates the mechanical deformation of the rod. However, because the frequency of the extensional mode is much lower than that of the breathing mode, the extensional mode will dominate the response for a real experiment (a finite-time heating/expansion process). The results of this model are compared to data from transient absorption experiments performed on gold nanorods with average lengths between 30 and 110 nm. The transient absorption traces show pronounced modulations with periods between 40 and 120 ps, which are only observed when the probe laser is tuned to the longitudinal plasmon band. The measured periods are in good agreement with the expected values for the extensional modes of the rods. For rods wider than 20 nm, the breathing mode can also be observed and, again, the measured periods are in good agreement with the theoretical calculations. The breathing mode is not observed for thinner rods (<20 nm width) because, in this case, the period is comparable to the time scale for lattice heating.

SELECTION OF CITATIONS
SEARCH DETAIL
...