Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Molecules ; 29(13)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38999176

ABSTRACT

The food industry uses indigo carmine (IC) extensively as a blue colorant to make processed food for young children and the general population more attractive. Given that IC can act as a ligand, this raises concerns about its interactions with essential metal ions in the human body. In view of this interest, in the present investigation, the copper(II)/indigo carmine system was thoroughly investigated in aqueous solution and in the solid state, and the detailed structural characterization of the complexes formed between copper(II) and the ligand was performed using spectroscopic methods, complemented with DFT and TD-DFT calculations. NMR and UV/Vis absorption spectroscopy studies of the ligand in the presence of copper(II) show changes that clearly reveal strong complexation. The results point to the formation of complexes of 1:1, 1:2 and 2:1 Cu(II)/IC stoichiometry in aqueous solution, favored in the pH range 6-10 and stable over time. DFT calculations indicate that the coordination of the ligand to the metal occurs through the adjacent carbonyl and amine groups and that the 1:1 and the 2:1 complexes have distorted tetrahedral metal centers, while the 1:2 structure is five-coordinate with a square pyramidal geometry. FTIR results, together with EDS data and DFT calculations, established that the complex obtained in the solid state likely consists of a polymeric arrangement involving repetition of the 1:2 complex unit. These results are relevant in the context of the study of the toxicity of IC and provide crucial data for future studies of its physiological effects. Although the general population does not normally exceed the maximum recommended daily intake, young children are highly exposed to products containing IC and can easily exceed the recommended dose. It is, therefore, extremely important to understand the interactions between the dye and the various metal ions present in the human body, copper(II) being one of the most relevant due to its essential nature and, as shown in this article, the high stability of the complexes it forms with IC at physiological pH.

2.
Langmuir ; 38(39): 11845-11859, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36121768

ABSTRACT

We report the synthesis of a new conjugated polymer bearing crown ether moieties, poly[(N(1-aza-[18]crown-6)carbamido)thiophene-2,5-diyl-alt-1,4-phenylene] (BG2). In water, BG2 forms a dispersion with a slightly cloudy appearance. We have studied the effect of adding surfactants, with different polar head groups, on these polymer-polymer aggregates. Special attention is given to the system with the anionic surfactant, sodium dodecyl sulfate (SDS). The combination of photophysical techniques with electrical conductivity, NMR (1H, 13C, and 27Na), DFT calculations, molecular dynamics simulations, and small-angle neutron scattering (SANS) provides a detailed picture on the behavior of the SDS/BG2 system in aqueous solution and in thin films. NMR, electric conductivity, and DFT results suggest that hydrophilic interactions occur between the polar headgroup of the surfactant (OSO3- Na+) and the aza-[18]-crown-6 moiety. DFT calculations confirmed the capability of BG2 to form stable complexes with the Na+ cations, where the cation can be either inside the azacrown cavity or sandwiched between the cavity and the polymer chain, which seem to determine the position of the surfactant hydrocarbon chain and, therefore, be responsible for the disruption of the BG2 aggregates and subsequent increase in the photoluminescence quantum yields. SANS measurements, made with hydrogenated and deuterated SDS in D2O, clearly show how micron-sized aggregates of BG2 are broken down by SDS and then how BG2 becomes preferentially incorporated within joint colloidal particles of BG2 and SDS with increasing [SDS]/[BG2] molar ratio.

3.
Dalton Trans ; 50(46): 16970-16983, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34752595

ABSTRACT

Following previous studies on the complexation in aqueous solutions of 8-hydroxyquinoline-5-sulfonate (8-HQS) with the trivalent metal ions, Al(III) and Ga(III) and various other metal ions, using multinuclear NMR, DFT calculations, UV-vis absorption and luminescence techniques, we have extended our studies on 8-HQS complexation to the trivalent metal ion In(III). The study combines the high sensitivity of luminescence techniques and the selectivity of multinuclear NMR spectroscopy with the structural details accessible through DFT calculations, and aims to obtain a complete understanding of the complexation between the In3+ metal ion and 8-HQS, and how this influences the luminescence behaviour. A full speciation study has been performed and, as has been reported for the complexes of 8-hydroxyquinoline (8-HQ), the dominant complexes of 8-HQS with In(III) show marked differences in the complexation behaviour when compared with the equivalent complexes with the other group 13 cations Al(III) and Ga(III). While all three complexes have a 1 : 3 (metal : ligand) stoichiometry, those with Al(III) and Ga(III) show a mer-geometry of the ligands around the metal centre, whereas the fac-geometry is observed for the complexes with In(III). On binding to metal ions, 8-HQS shows a marked increase in the intensity of the fluorescence emission band compared to that of the virtually non-luminescent free ligand. However, the increase for In(III) is less pronounced than with Al(III) or Ga(III). These observations have important implications for the application of the complexes in sensing, light emitting devices (e.g. OLEDs), or as electron transport layers in photovoltaics for solar energy conversion. Furthermore, surfactant complexation is known to improve the fluorescence intensity in metal complexes with 8-HQS, by inhibiting the ligand exchange, as we have reported for complexes of HQS with Al(III) and Ga(III). Accordingly, in view of the development of applications in either sensing or optoelectronics, our interest also includes the study of HQS complexes of In(III) in the presence of cationic surfactants, in comparison with previous results with Al(III) and Ga(III).

4.
Photochem Photobiol Sci ; 19(11): 1522-1537, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-32966544

ABSTRACT

The photophysical properties of Eu3+ and Tb3+ complexes of DOTAGA and DO3A-monoamide conjugates of the Pittsburgh compound B (PiB) chromophore, prepared using linkers of different lengths and flexibilities, and which form stable negatively charged (LnL1), and uncharged (LnL2) complexes, respectively, were studied as potential probes for optical detection of amyloid aggregates. The phenylbenzothiazole (PiB) moiety absorbs light at wavelengths longer than 330 nm with a high molar absorption coefficient in both probes, and acts as an antenna in these systems. The presence of the luminescent Ln3+ ion quenches the excited states of PiB through an energy transfer process from the triplet state of PiB to the metal centre, and structured emission is seen from Eu3+ and Tb3+. The luminescence study indicates the presence of a 5D4 → T1 back transfer process in the Tb3+ complexes. It also provides insights on structural properties of the Eu3+ complexes, such as the high symmetry environment of the Eu3+ ion in a single macrocyclic conformation and the presence of one water molecule in its inner coordination sphere. The overall quantum yield of luminescence of EuL1 is higher than for EuL2. However, their low values reflect the low overall sensitization efficiency of the energy transfer process, which is a consequence of the large distances between the metal center and the antenna, especially in the EuL2 complex. DFT calculations confirmed that the most stable conformation of the Eu3+ complexes involves a combination of a square antiprismatic (SAP) geometry of the chelate and an extended conformation of the linker. The large calculated average distances between the metal center and the antenna point to the predominance of the Förster energy transfer mechanism, especially for EuL2. This study provides insights into the behavior of amyloid-targeted Ln3+ complexes as optical probes, and contributes towards their rational design.


Subject(s)
Amyloid beta-Peptides/chemistry , Aniline Compounds/chemistry , Chelating Agents/chemistry , Lanthanoid Series Elements/chemistry , Luminescent Agents/chemistry , Luminescent Measurements , Protein Aggregates , Thiazoles/chemistry , Density Functional Theory , Humans , Molecular Structure , Optical Imaging , Photochemical Processes
5.
ACS Omega ; 3(10): 12893-12904, 2018 Oct 31.
Article in English | MEDLINE | ID: mdl-30411023

ABSTRACT

A series of push-pull heterocyclic N,N-diphenylhydrazones were prepared to study the effect of structural modifications (different π-spacers and electron-withdrawing groups) on the optical (linear and nonlinear) and electronic properties of the molecules. The photovoltaic response of dye-sensitized solar cells assembled using nanocrystalline titania photosensitized with the synthesized dyes was also studied. These heterocyclic push-pull conjugated dyes involve N,N-diphenylhydrazones as electron donors linked to bithiophene or thieno[3,2-b]thiophene spacers and were functionalized with carboxylic acid, cyanoacetic acid, or dicyanovinyl acceptor groups. A combination of Suzuki-Miyaura cross-coupling, Vilsmeier formylation, and condensation reactions was used to synthesize the intermediates and final products. Density functional theory (DFT) and time dependent-DFT calculations were used to obtain information on conformation, electronic structure, and electron distribution, both for the free dyes and those adsorbed on TiO2. The results of this multidisciplinary study indicate that dyes 5b and 6b have the strongest second-order nonlinear optical response with hyperpolarizability values in the range of ß = 2330 × 10-30 to 2750 × 10-30 esu, whereas photovoltaic power conversion efficiencies reach values in the range of 0.7-3.0% for dyes 5a-b and 7c and were enhanced by coadsorbing deoxycholic acid (0.8-5.1%).

6.
Polymers (Basel) ; 10(3)2018 Mar 02.
Article in English | MEDLINE | ID: mdl-30966293

ABSTRACT

Three anionic fluorene-based alternating conjugated polyelectrolytes (CPEs) have been synthesized that have 9,9-bis(4-phenoxy-butylsulfonate) fluorene-2,7-diyl and 1,4-phenylene (PBS-PFP), 4,4'-biphenylene (PBS-PFP2), or 4,4″-p-terphenylene (PBS-PFP3) groups, and the effect of the length of the oligophenylene spacer on their aggregation and photophysics has been studied. All form metastable dispersions in water, but can be solubilized using methanol, acetonitrile, or dioxane as cosolvents. This leads to increases in their emission intensities and blue shifts in fluorescence maxima due to break-up of aggregates. In addition, the emission maximum shifts to the blue and the loss of vibronic structure are observed when the number of phenylene rings is increased. Debsity Functional Theory (DFT) calculations suggest that this is due to increasing conformational flexibility as the number of phenylene rings increases. This is supported by increasing amplitude in the fast component in the fluorescence decay. The nonionic surfactant n-dodecylpentaoxyethylene glycol ether (C12E5) also breaks up aggregates, as seen by changes in fluorescence intensity and maximum. However, the loss in vibrational structure is less pronounced in this case, possibly due to a more rigid environment in the mixed surfactant-CPE aggregates. Further information on the aggregates formed with C12E5 was obtained by electrical conductivity measurements, which showed an initial increase in specific conductivity upon addition of surfactants, while at higher surfactant/CPE molar ratios a plateau was observed. The specific conductance in the plateau region decreased in the order PBS-PFP3 < PBS-PFP2 < PBS-PFP, in agreement with the change in charge density on the CPE. The reverse process of aggregate formation has been studied by injecting small volumes of solutions of CPEs dissolved at the molecular level in a good solvent system (50% methanol-water) into the poor solvent, water. Aggregation was monitored by changes in both fluorescence and light scattering. The rate of aggregation increases with hydrophobicity and concentration of sodium chloride but is only weakly dependent on temperature.

7.
Dalton Trans ; 46(29): 9358-9368, 2017 Jul 25.
Article in English | MEDLINE | ID: mdl-28548670

ABSTRACT

Multinuclear (1H and 13C) NMR, and Raman spectroscopy, combined with DFT calculations, provide detailed information on the complexation between U(vi) oxoions and 8-hydroxyquinoline-5-sulfonate (8-HQS) in aqueous solution. Over the concentration region studied, U(vi) oxoions (uranyl ions) form one dominant complex with 8-HQS in water in the pH range 3-6, a mononuclear 1 : 2 (metal : ligand) complex, with the metal centre (UO22+) coordinated to two 8-HQS ligands, together with one or more water molecules. An additional minor 1 : 1 complex has also been detected for solutions with a 1 : 1 metal : ligand molar ratio. The geometry of the dominant complex is proposed based on the combination of the NMR and Raman results with DFT calculations. Further information on the electronic structure of the complex has been obtained from UV/visible absorption and luminescence spectra. The complex of U(vi) and 8-HQS is non-luminescent, in contrast to what has been observed with this ligand and many other metal ions. We suggest that this is due to the presence of low-lying ligand-to-metal charge transfer (LMCT) states below the emitting ligand-based and uranyl-based levels which quench their emission. These studies have fundamental importance and are also relevant in the context of environmental studies, and the water soluble ligand 8-HQS has been chosen for application in uranium remediation of aqueous environments.

8.
ACS Omega ; 2(12): 9268-9279, 2017 Dec 31.
Article in English | MEDLINE | ID: mdl-29302638

ABSTRACT

The effect of anchoring groups on the optical and electrochemical properties of triphenylamine-thienothiophenes, and on the photovoltaic performance of DSSCs photosensitized with the prepared dyes, was studied using newly synthesized compounds with cyanoacetic acid or rhodanine-3-acetic acid groups. Precursor aldehydes were synthesized through Suzuki cross-coupling, whereas Knoevenagel condensation of these with 2-cyanoacetic acid or rhodanine-3-acetic acid afforded the final push-pull dyes. A comprehensive photophysical study was performed in solution and in the solid state. The femtosecond time-resolved transient absorption spectra for the synthesized dyes were obtained following photoexcitation in solution and for the dyes adsorbed to TiO2 mesoporous films. Information on conformation, electronic structure, and electron distribution was obtained by density functional theory (DFT) and time-dependent DFT calculations. Triphenylamine-thienothiophene functionalized with a cyanoacetic acid anchoring group displayed the highest conversion efficiency (3.68%) as the dye sensitizer in nanocrystalline TiO2 solar cells. Coadsorption studies were performed for this dye with the ruthenium-based N719 dye, and they showed dye power conversion efficiencies enhanced by 20-64%. The best cell performance obtained with the coadsorbed N719 and cyanoacetic dye showed an efficiency of 6.05%.

9.
J Chem Phys ; 145(1): 014304, 2016 Jul 07.
Article in English | MEDLINE | ID: mdl-27394105

ABSTRACT

Near-infrared (near-IR) narrowband selective vibrational excitation and annealing of gallic acid (3,4,5-trihydroxybenzoic acid) isolated in cryogenic matrices were used to induce interconversions between its most stable conformers. The isomerizations were probed by infrared spectroscopy. An extensive set of quantum chemical calculations, carried out at the DFT(B3LYP)/6-311++G(d,p) level of approximation, was used to undertake a detailed analysis of the ground state potential energy surface of the molecule. This investigation of the molecule conformational space allowed extracting mechanistic insights into the observed annealing- or near-IR-induced isomerization processes. The infrared spectra of the two most stable conformers of gallic acid in N2, Xe, and Ar matrices were fully assigned. Finally, the UV-induced photochemistry of the matrix isolated compound was investigated.

10.
Phys Chem Chem Phys ; 18(25): 16629-40, 2016 Jun 22.
Article in English | MEDLINE | ID: mdl-26817700

ABSTRACT

We have studied the interaction of 8-hydroxyquinoline-5-sulfonate (8-HQS) with the metal ions Al(iii) and Zn(ii) in aqueous solution in the presence of tetraalkylammonium surfactants using UV/vis absorption, fluorescence, NMR spectroscopy and electrical conductivity measurements, complemented by DFT calculations and molecular dynamics (MD) simulations. Under appropriate conditions, complexes between 8-HQS and metal ions form rapidly, and have similar electronic, spectroscopic and photophysical properties to the corresponding metal quinolates, such as Alq3. These interact with the cationic surfactants, leading to marked increases in fluorescence intensity. However, significant differences are seen in the behavior of the two metal ions. With aluminium, a stable [Al(8-QS)3](3-) anion is formed, and interacts, predominantly through electrostatic interactions, with the surfactant, without disrupting the metal ion coordination sphere. In contrast, with Zn(ii), there is a competition between the metal ion and surfactants in the interaction with 8-HQS, although the [Zn(8-QS)2(H2O)2](2-) species is stable at appropriate pH and surfactant concentration. The studies are extended to systems with the conjugated polyelectrolyte (CPE) poly-(9,9-bis(6-N,N,N-trimethylammonium)hexyl)-fluorene-phenylene bromide (HTMA-PFP), which has a similar alkylammonium chain to the surfactants. Mixing metal salt, 8-HQS and HTMA-PFP in the presence of a nonionic surfactant leads to the formation of a metal complex/CPE supramolecular assembly between the conjugated polyelectrolyte and the metal/8-HQS complex, as demonstrated by electronic energy transfer. The potential of these systems in sensing, light harvesting, and electron injection/transport layers in organic semiconductor devices is discussed.

11.
Dalton Trans ; 44(44): 19076-89, 2015 Nov 28.
Article in English | MEDLINE | ID: mdl-26498366

ABSTRACT

Multinuclear ((1)H, (13)C, (95)Mo and (183)W) NMR spectroscopy, combined with DFT calculations, provides detailed information on the complexation between the Mo(VI) and W(VI) oxoions and 8-hydroxyquinoline-5-sulfonate (8-HQS) in aqueous solution. Over the concentration region studied, Mo(VI) and W(VI) oxoions form three homologous complexes with 8-HQS in water in the pH range 2-8. Two of these, detected at pH < 6, are mononuclear 1 : 2 (metal : ligand) isomers, with the metal centre (MO2(2+)) coordinated to two 8-HQS ligands. An additional complex, dominant at slightly higher pH values (5-8) for solutions with a 1 : 1 metal : ligand molar ratio, has a binuclear M2O5(2+) centre coordinated to two 8-HQS ligands. The two metal atoms are bridged by three oxygen atoms, two coming from 8-HQS, together with the M-O-M bridge of the bimetallic centre. We show that the long-range exchange corrected BOP functional with local response dispersion (LCBOPLRD), together with explicit solvent molecules, leads to geometries that readily converge to equilibrium structures having realistic bridging O8-HQS-M bonds. Previous attempts to calculate the structures of such binuclear complexes using DFT with the B3LYP functional have failed due to difficulties in treating the weak interaction in these bridged structures. We believe that the LCBOPLRD method may be of more general application in theoretical studies in related binuclear metal complexes. UV/visible absorption and luminescence spectra of all the complexes have also been recorded. The complex between Mo(vi) and 8-HQS is only weakly luminescent, in contrast to what has been observed with this ligand and many other metal ions. We suggest that this is due to the presence of low-lying ligand-to-metal charge transfer (LMCT) states close to the emitting ligand-based level which quench the emission. However, with W(VI), DFT calculations show that the LMCT states are now much higher in energy than the ligand based levels, leading to a marked increase in fluorescence.


Subject(s)
Molybdenum/chemistry , Oxyquinoline/analogs & derivatives , Tungsten/chemistry , Coordination Complexes/chemistry , Fluorescence , Hydrogen-Ion Concentration , Luminescence , Magnetic Resonance Spectroscopy , Models, Molecular , Oxyquinoline/chemistry , Photochemical Processes , Solutions , Solvents , Spectrophotometry, Ultraviolet
12.
Dalton Trans ; 44(25): 11491-503, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26030802

ABSTRACT

The kinetically inert chromium(III) tris-(8-hydroxyquinolinate), Crq3, has been synthesized, crystallized from 90% methanol-water, and characterized by MALDI-TOF mass spectrometry, thermogravimetry, FTIR, NMR spectroscopy, and X-ray powder diffraction. It is formed as a methanol solvate, but the solvent can be removed by heating. Large paramagnetic shifts and spectral broadening in (1)H NMR spectra indicate electron delocalization between the metal and the ligand. DFT calculations show it is present as the meridional isomer, with the HOMO largely based on one of the metal 3d orbitals and the LUMO essentially localized on the ligands. Cyclic voltammetry (CV) in acetonitrile solutions shows four oxidation peaks and two, less intense reduction waves on the first scan. The HOMO energy determined from the first oxidation peak is fairly close to that obtained by DFT, in agreement with this being mainly metal based. Although the number of peaks decreases on subsequent CV scans, the complex shows markedly enhanced electrochemical stability compared with aluminium(III) tris-(8-hydroxyquinolinate). Solution UV/visible absorption and solid diffuse reflectance spectra have a weak, long wavelength band, assigned to the metal based d-d transition, in addition to the normal, ligand based bands seen in metal quinolates. The energy of the lowest energy band is identical to the HOMO-LUMO separation obtained by cyclic voltammetry, in agreement with the above description. The compound is only weakly luminescent, in contrast to many other metal quinolates, due to the lowest energy transition being metal rather than ligand based. The potential of this compound as an electron transporting/hole blocking layer in optoelectronic devices is indicated.

13.
Dalton Trans ; 42(10): 3682-94, 2013 Mar 14.
Article in English | MEDLINE | ID: mdl-23299787

ABSTRACT

Multinuclear ((1)H, (13)C and (71)Ga) magnetic resonance spectroscopy (1D and 2D), DFT calculations and luminescence techniques have been used to study 8-hydroxyquinoline-5-sulfonate (8-HQS) and its complexes with Ga(III) in aqueous solutions. The study combines the high sensitivity of luminescence techniques and the selectivity of multinuclear NMR spectroscopy with the structural details accessible through DFT calculations, and aims to obtain a complete understanding of the complexation between the Ga(3+) ion and 8-HQS, and how this influences the luminescence behaviour. A full speciation study has been performed on this system and three complexes detected, with (metal : ligand) 1 : 1, 1 : 2 and 1 : 3 stoichiometries, the results being consistent with those previously found for the system Al(III)-8-HQS. Complexation in these systems is relevant to their potential biomedical, sensing and optoelectronic applications. On binding to Ga(III), a marked increase is seen in the intensity of the 8-HQS fluorescence band, which is accompanied by changes in the absorption spectra. These support the use of 8-HQS as a sensitive fluorescent sensor to detect Ga(3+) metal ions in surface waters, biological fluids, etc., and its metal complexes as an emitting or charge transport layer in light emitting devices. However, the fluorescence quantum yield of the Ga(III)-8-HQS 1 : 3 complex is about 35% of that of the corresponding system with Al(III). Although this may be due in part to a heavy atom effect favouring S(1)→ T(1) intersystem crossing with Ga(3+), this does not agree with transient absorption measurements on the triplet state yield, which is lower with the Ga(III) system than with Al(III). Instead, it is suggested that photolabilisation of ligand exchange plays a major role in nonradiative decay of the excited state and that this is more efficient with the Ga(3+) complex. Based on these results, suggestions are made of ways of enhancing fluorescence intensity in metal complexes with 8-HQS by inhibiting ligand exchange using surfactant complexation for applications in either sensing or optoelectronics.


Subject(s)
Coordination Complexes/chemistry , Gallium/chemistry , Oxyquinoline/analogs & derivatives , Gallium/analysis , Ligands , Molecular Conformation , Oxyquinoline/chemistry , Quantum Theory , Spectrophotometry, Ultraviolet , Thermodynamics , Water Pollutants, Chemical/analysis
14.
Dalton Trans ; 41(40): 12478-89, 2012 Oct 28.
Article in English | MEDLINE | ID: mdl-22955198

ABSTRACT

Multinuclear ((1)H, (13)C and (27)Al) magnetic resonance spectroscopy (1D and 2D), DFT calculations and fluorescence have been used to study the complexation of 8-hydroxyquinoline-5-sulfonate (8-HQS) with Al(III). The study combines the high sensitivity of luminescence techniques, the selectivity of multinuclear NMR spectroscopy with the structural details accessible through DFT calculations, and aims to provide a detailed understanding of the complexation between the Al(3+) ion and 8-HQS. A full speciation study has been performed and over the concentration region studied, the Al(3+) ion forms complexes with 8-HQS in an aqueous solution in the pH range 2-6. At higher pH, the extensive hydrolysis of the metal limits complexation. Using Job's method, three complexes were detected, with 1 : 1, 1 : 2 and 1 : 3 (metal : ligand) stoichiometries. These results are in agreement with those previously reported using potentiometric and electrochemical techniques. The geometries of the complexes are proposed based on the combination of NMR results with optimized DFT calculations. All the complexes in aqueous solutions at 25 °C are mononuclear species, and have an approximately octahedral geometry with the metal coordinated to one molecule of 8-HQS and four molecules of water (1 : 1 complex), two molecules of 8-HQS and two molecules of water mutually cis (1 : 2 complex), and to three molecules of 8-HQS in non-symmetrical arrangement (mer-isomer), for the 1 : 3 (metal : ligand) complex. On binding to Al(III), 8-HQS shows a more marked fluorescence than the weakly fluorescent free ligand. In addition, as previously noted, there are marked changes in the absorption spectra, which support the use of 8-HQS as a sensitive optical sensor to detect Al(3+) metal ions in surface waters and biological fluids. These complexes also show potential for applications in organic light emitting diodes (OLEDs).


Subject(s)
Aluminum/chemistry , Coordination Complexes/chemistry , Oxyquinoline/analogs & derivatives , Luminescence , Magnetic Resonance Spectroscopy , Oxyquinoline/chemistry , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet
15.
J Phys Chem B ; 116(25): 7548-59, 2012 Jun 28.
Article in English | MEDLINE | ID: mdl-22554070

ABSTRACT

An anionic fluorene-phenylene poly{1,4-phenylene-[9,9-bis(4-phenoxy-butylsulfonate)]fluorene-2,7-diyl}-based copolymer containing on-chain perylenediimine (PDI) chromophoric units, PBS-PFP-PDI, was synthesized and its photophysical properties studied as aggregates and isolated chains in water and dioxane/water (1:1) solution. UV-vis and emission spectroscopy measurements, time-correlated single photon counting, and wide field imaging have been employed to investigate the excited-state behavior of the PBS-PFP-PDI copolymer, including the effect of environment on the energy and electron transfer to the on-chain PDI chromophore. Although the Förster overlap integral is favorable, no evidence is found for intramolecular singlet excitation energy transfer in isolated copolymer chains in solution. Fluorescence is suggested to involve an interchain process, thus revealing that isolated copolymer chains in solution do not undergo efficient intramolecular energy transfer. However, quenching of the PBS-PFP excited state by PDI is observed in aqueous media and ultrafast pump-probe studies in water or dioxane-water solutions show that electron transfer occurs from the phenylene-fluorene units to the PDI. The extent of electron transfer increases with aggregation, suggesting it is largely an interchain process. The interaction of the negatively charged PBS-PFP-PDI copolymer with the positively charged surfactant hexadecyltrimethylammonium bromide (CTAB) in solution has also been studied. The copolymer PBS-PFP-PDI aggregates with the surfactant already at concentrations below the critical micelle concentration (cmc) and the nonpolar environment allows intermolecular energy transfer, observed by the weak emission band located at 630 nm that is associated with the emission of the PDI chromophore. However, the fact that the PDI photoluminescence (PL) lifetime (~1.4 ns) obtained in the presence of CTAB is considerably shorter than that of the nonaggregated chromophore (~5.4 ns) suggests that even in this case there is considerable PL quenching, possibly through some charge transfer route. The increase of the PBS-PFP-PDI photoluminescence intensity at surfactant concentrations above the cmc indicates deaggregation of polyelectrolyte within the initially formed polyelectrolyte-surfactant aggregates.


Subject(s)
Anions/chemistry , Coloring Agents/chemistry , Fluorenes/chemistry , Imides/chemistry , Perylene/analogs & derivatives , Polymers/chemistry , Alkanesulfonates/chemical synthesis , Alkanesulfonates/chemistry , Anions/chemical synthesis , Cetrimonium , Cetrimonium Compounds/chemistry , Coloring Agents/chemical synthesis , Electron Transport , Fluorenes/chemical synthesis , Imides/chemical synthesis , Models, Molecular , Perylene/chemical synthesis , Perylene/chemistry , Polymers/chemical synthesis , Solubility , Spectrometry, Fluorescence , Spectrophotometry , Water/chemistry
16.
Dalton Trans ; 40(44): 11732-41, 2011 Nov 28.
Article in English | MEDLINE | ID: mdl-21964543

ABSTRACT

Multinuclear ((1)H, (13)C) magnetic resonance spectroscopy, DFT calculations and luminescence techniques have been used to study 8-hydroxyquinoline-5-sulfonate (8-HQS) and its complexes with Zn(ii), in aqueous solution. The study combines the high sensitivity of luminescence techniques, the selectivity of multinuclear NMR spectroscopy with the structural details accessible through DFT calculations, and aims to obtain a detailed understanding of the complexation between the Zn(2+) ion and 8-HQS. In addition to a complete assignment of the (1)H and (13)C NMR signals of 8-HQS, a full speciation study has been performed. Over the concentration region studied, Zn(2+) metal ion forms only one significant complex species with 8-HQS in aqueous solution in the pH range 6-8. Job's method shows that this species has a 1:2 (metal:ligand) stoichiometry. The geometry around the metal centre, according to structural optimization using DFT calculations, is suggested to be square bipyramidal, with two coordinated water molecules mutually trans, and the remaining positions occupied by the donor groups of the two coordinated 8-HQS ligands. On binding to Zn(ii), 8-HQS shows a marked fluorescence compared with the weakly-luminescent free ligand. In addition, as previously noted, there are marked changes in the absorption spectra, which support the use of 8-HQS as a sensitive fluorescent sensor to detect Zn(2+) metal ion in surface waters, biological fluids, etc. Based on results of the structural studies, suggestions are made of ways for enhancing fluorescence sensitivity.


Subject(s)
Coordination Complexes/chemistry , Magnetic Resonance Spectroscopy , Oxyquinoline/analogs & derivatives , Spectrometry, Fluorescence , Zinc/chemistry , Hydrogen-Ion Concentration , Oxyquinoline/chemistry , Quantum Theory
17.
Dalton Trans ; 40(17): 4374-83, 2011 May 07.
Article in English | MEDLINE | ID: mdl-21327241

ABSTRACT

In this perspective we will discuss recent results on structural aspects of peroxocomplexes of transition metals having the d(0) configuration (V(V), Mo(VI), W(VI)), and show how these may be related to the reactivity of these species in both chemical and biological systems. In addition, we will consider the relevance of structural properties to their involvement as important intermediates in industrial and enzymatic catalysis. These will be related to the behaviour of peroxocomplexes of other diamagnetic transition metals, such as those with d(8) (Pd(II), Pt(II)) configurations.


Subject(s)
Coordination Complexes/chemistry , Molybdenum/chemistry , Tungsten Compounds/chemistry , Vanadates/chemistry , Catalysis , Crystallography, X-Ray , Molecular Conformation , Oxidation-Reduction
18.
Dalton Trans ; (44): 9735-45, 2009 Nov 28.
Article in English | MEDLINE | ID: mdl-19885519

ABSTRACT

The DFT B3LYP/SBKJC method has been used to calculate the gas-phase optimized geometries of the glycolate oxoperoxo vanadium(V) complexes [V(2)O(2)(OO)(2)(gly)(2)](2-), [V(2)O(3)(OO)(gly)(2)](2-) and [VO(OO)(gly)(H(2)O)](-). The (51)V, (17)O, (13)C and (1)H chemical shifts have been calculated for the theoretical geometries in all-electron DFT calculations at the UDFT-IGLO-PW91 level and have been subsequently compared with the experimental chemical shifts in solution. In spite of being applied to the isolated molecules, the calculations allowed satisfactory reproduction of the multinuclear NMR solution chemical shifts of the complexes, suggesting that the theoretical structures are probably close to those in solution. The effects of structural changes on the (51)V and (17)O NMR chemical shifts have been analysed using the referred computational methodologies for one of the glycolate complexes and for several small molecules taken as models. These calculations showed that structural modifications far from the metal nucleus do not significantly affect the metal chemical shift. This finding explains why it is possible to establish reference scales that correlate the type of complex (type of metal centre associated with a certain type of ligand) with its typical region of metal chemical shifts. It has also been found that the V[double bond, length as m-dash]O bond length is the dominant geometrical parameter determining both delta(51)V and the oxo delta(17)O in this kind of complex.


Subject(s)
Glycolates/chemistry , Organometallic Compounds/chemistry , Vanadium/chemistry , Ligands , Magnetic Resonance Spectroscopy
19.
Dalton Trans ; (43): 9616-24, 2009 Nov 21.
Article in English | MEDLINE | ID: mdl-19859617

ABSTRACT

Multinuclear ((1)H, (13)C, (17)O, (31)P, (95)Mo, (183)W) magnetic resonance spectroscopy (1D and 2D) has been used to study the complexation of molybdate(VI) and tungstate(VI) with 3-phospho-D-glyceric and 2-phospho-D-glyceric acids. 3-Phospho-D-glyceric acid forms four and five complexes, respectively, with molybdate and tungstate. These have MO(2)(2+) centres, and involve the carboxylate and the adjacent OH groups. Two isomeric 1:2 (metal-ligand) complexes are detected, in addition to one mononuclear species having MO(3) centres and involving the ligand in a tridentate chelation and a dominant 12:4 species with both tungstate(VI) and molybdate(VI). The dominant 12:4 species can be seen as two 1:2 complexes bound together in a ring through two diphosphometalate moieties, derived from heptamolybdate or heptatungstate, respectively, by inclusion of two phosphate groups from the ligands. Tungstate is also able to form an additional 2:1 tridentate species. 2-Phospho-D-glyceric acid does not interact with tungstate but is able to form one phosphomolybdate species with molybdate, which can be regarded as a heptamolybdate derivative. Density functional theory (DFT) calculations were performed for 1:2 complexes, including calculations on the relative energies of the 1:2 complexes detected in related systems, to validate previously proposed structures. The results are compared with those obtained from multinuclear NMR spectroscopy.


Subject(s)
Glyceric Acids/chemistry , Molybdenum/chemistry , Organometallic Compounds/chemistry , Quantum Theory , Tungsten/chemistry , Hydrogen-Ion Concentration , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Conformation
20.
J Phys Chem B ; 113(35): 11808-21, 2009 Sep 03.
Article in English | MEDLINE | ID: mdl-19663434

ABSTRACT

Relationships have been obtained between intermonomer torsional angle and NMR chemical shifts ((1)H and (13)C) for isolated chains of two of the most important poly(9,9-dialkylfluorenes), poly[9,9-bis(2-ethylhexyl)fluorene-2,7-diyl] (PF2/6) and the copolymer poly(9,9-dioctylfluorene-co-[2,1,3]benzothiadiazole-4,7-diyl) (F8BT), using DFT calculations. The correlations provide a model for NMR spectral data interpretation and the basis for analysis of conformational changes in poly(9,9-dialkylfluorene-2,7-diyl)s. The correlations obtained for PF2/6 indicate that the (13)C chemical shifts of the aromatic carbons close to the intermonomer connection (C1, C2, and C3) have minimum values at planar conformations (0 degrees and 180 degrees ) and maximum values at 90 degrees conformations. In contrast, the (1)H chemical shifts of the corresponding aromatic ortho protons (Ha and Hb) are greatest for planar conformations, and the minimum values are seen for 90 degrees conformations. For the F8BT copolymer, similar relationships are observed for the (1)H (Ha, Hb, and Hc) aromatic shifts. Considering the aromatic carbons of F8BT, the behavior of C2, C4, C5, and C6 is similar to that found for the PF2/6 carbons. However, C1 and C3 of the fluorene moiety behave differently with varying torsion angle. These are in close proximity to the fluorene-benzothiadiazole linkage and are markedly affected by interactions with the thiadiazole unit such that delta(C1) is a maximum for 180 degrees and a minimum for 0 degrees , whereas delta(C3) is a maximum for 0 degrees and minimum for 180 degrees. We have studied the (1)H and (13)C spectra of the two polymers at temperatures between -50 degrees C and +65 degrees C. The observed changes to higher or lower frequency in the aromatic resonances were analyzed using these theoretical relationships. Fluorescence studies on PF2/6 in chloroform solution suggest there are no significant interchain interactions under these conditions. This is supported by variable-temperature NMR results. Polymer-solvent and polymer intramolecular interactions were found to be present and influence all of the alkylic and one of the aromatic (1)H resonances (Hb). The detailed attribution of the (1)H and (13)C NMR spectra of the two polymers was made prior to the establishment of the relationships between torsion angle and NMR chemical shifts. This was carried out through DFT calculation of the (1)H and (13)C shielding constants of the monomers, coupled with distortionless enhancement by polarization transfer and heteronuclear correlation NMR spectra. Several DFT levels of calculation were tested for both optimization of structures and shielding constants calculation. The B3LYP/6-31G(d,p) method was found to perform well in both cases.


Subject(s)
Fluorenes/chemistry , Magnetic Resonance Spectroscopy/methods , Algorithms , Chloroform , Models, Chemical , Models, Molecular , Models, Theoretical , Molecular Conformation , Polymers/chemistry , Solvents/chemistry , Spectrometry, Fluorescence/methods , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...