Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Front Netw Physiol ; 4: 1351815, 2024.
Article in English | MEDLINE | ID: mdl-38863734

ABSTRACT

Background: Abnormal neuronal synchrony is associated with several neurological disorders, including Parkinson's disease (PD), essential tremor, dystonia, and epilepsy. Coordinated reset (CR) stimulation was developed computationally to counteract abnormal neuronal synchrony. During CR stimulation, phase-shifted stimuli are delivered to multiple stimulation sites. Computational studies in plastic neural networks reported that CR stimulation drove the networks into an attractor of a stable desynchronized state by down-regulating synaptic connections, which led to long-lasting desynchronization effects that outlasted stimulation. Later, corresponding long-lasting desynchronization and therapeutic effects were found in animal models of PD and PD patients. To date, it is unclear how spatially dependent synaptic connections, as typically observed in the brain, shape CR-induced synaptic downregulation and long-lasting effects. Methods: We performed numerical simulations of networks of leaky integrate-and-fire neurons with spike-timing-dependent plasticity and spatially dependent synaptic connections to study and further improve acute and long-term responses to CR stimulation. Results: The characteristic length scale of synaptic connections relative to the distance between stimulation sites plays a key role in CR parameter adjustment. In networks with short synaptic length scales, a substantial synaptic downregulation can be achieved by selecting appropriate stimulus-related parameters, such as the stimulus amplitude and shape, regardless of the employed spatiotemporal pattern of stimulus deliveries. Complex stimulus shapes can induce local connectivity patterns in the vicinity of the stimulation sites. In contrast, in networks with longer synaptic length scales, the spatiotemporal sequence of stimulus deliveries is of major importance for synaptic downregulation. In particular, rapid shuffling of the stimulus sequence is advantageous for synaptic downregulation. Conclusion: Our results suggest that CR stimulation parameters can be adjusted to synaptic connectivity to further improve the long-lasting effects. Furthermore, shuffling of CR sequences is advantageous for long-lasting desynchronization effects. Our work provides important hypotheses on CR parameter selection for future preclinical and clinical studies.

2.
Data Brief ; 54: 110345, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38586130

ABSTRACT

We present simulated data on coordinated reset stimulation (CRS) of plastic neuronal networks. The neuronal network consists of excitatory leaky integrate-and-fire neurons and plasticity is implemented as spike-timing-dependent plasticity (STDP). A synchronized state with strong synaptic connectivity and a desynchronized state with weak synaptic connectivity coexist. CRS may drive the network from the synchronized state into a desynchronized state inducing long-lasting desynchronization effects that persist after cessation of stimulation. This is used to model brain stimulation-induced transitions between a pathological state, with abnormally strong neuronal synchrony, and a physiological state, e.g., in Parkinson's disease. During CRS, a sequence of stimuli is delivered to multiple stimulation sites - called CR sequence. We present simulated data for the analysis of long-lasting desynchronization effects of CRS with shuffled CR sequences versus non-shuffled CR sequences in which the order of stimulus deliveries to the sites remains unchanged throughout the entire stimulation period. Such data are presented for networks with homogeneous synaptic connectivity and networks with inhomogeneous synaptic connectivity. Homogeneous synaptic connectivity refers to a network in which the probability of a synaptic connection does not depend on the pre- and postsynaptic neurons' locations. In contrast, inhomogeneous synaptic connectivity refers to a network in which the probability of a synaptic connection depends on the neurons' locations. The presented neuronal network model was used to analyse the impact of the CR sequences and their shuffling on the long-lasting effects of CRS [1].

4.
Front Neuroinform ; 17: 1217786, 2023.
Article in English | MEDLINE | ID: mdl-37675246

ABSTRACT

Introduction: The basal ganglia (BG) are involved in motor control and play an essential role in movement disorders such as hemiballismus, dystonia, and Parkinson's disease. Neurons in the motor part of the BG respond to passive movement or stimulation of different body parts and to stimulation of corresponding cortical regions. Experimental evidence suggests that the BG are organized somatotopically, i.e., specific areas of the body are associated with specific regions in the BG nuclei. Signals related to the same body part that propagate along different pathways converge onto the same BG neurons, leading to characteristic shapes of cortically evoked responses. This suggests the existence of functional channels that allow for the processing of different motor commands or information related to different body parts in parallel. Neurological disorders such as Parkinson's disease are associated with pathological activity in the BG and impaired synaptic connectivity, together with reorganization of somatotopic maps. One hypothesis is that motor symptoms are, at least partly, caused by an impairment of network structure perturbing the organization of functional channels. Methods: We developed a computational model of the STN-GPe circuit, a central part of the BG. By removing individual synaptic connections, we analyzed the contribution of signals propagating along different pathways to cortically evoked responses. We studied how evoked responses are affected by systematic changes in the network structure. To quantify the BG's organization in the form of functional channels, we suggested a two-site stimulation protocol. Results: Our model reproduced the cortically evoked responses of STN and GPe neurons and the contributions of different pathways suggested by experimental studies. Cortical stimulation evokes spatio-temporal response patterns that are linked to the underlying synaptic network structure. Our two-site stimulation protocol yielded an approximate functional channel width. Discussion/conclusion: The presented results provide insight into the organization of BG synaptic connectivity, which is important for the development of computational models. The synaptic network structure strongly affects the processing of cortical signals and may impact the generation of pathological rhythms. Our work may motivate further experiments to analyze the network structure of BG nuclei and their organization in functional channels.

5.
PLoS Comput Biol ; 18(11): e1010568, 2022 11.
Article in English | MEDLINE | ID: mdl-36327232

ABSTRACT

Synaptic dysfunction is associated with several brain disorders, including Alzheimer's disease, Parkinson's disease (PD) and obsessive compulsive disorder (OCD). Utilizing synaptic plasticity, brain stimulation is capable of reshaping synaptic connectivity. This may pave the way for novel therapies that specifically counteract pathological synaptic connectivity. For instance, in PD, novel multichannel coordinated reset stimulation (CRS) was designed to counteract neuronal synchrony and down-regulate pathological synaptic connectivity. CRS was shown to entail long-lasting therapeutic aftereffects in PD patients and related animal models. This is in marked contrast to conventional deep brain stimulation (DBS) therapy, where PD symptoms return shortly after stimulation ceases. In the present paper, we study synaptic reshaping by periodic multichannel stimulation (PMCS) in networks of leaky integrate-and-fire (LIF) neurons with spike-timing-dependent plasticity (STDP). During PMCS, phase-shifted periodic stimulus trains are delivered to segregated neuronal subpopulations. Harnessing STDP, PMCS leads to changes of the synaptic network structure. We found that the PMCS-induced changes of the network structure depend on both the phase lags between stimuli and the shape of individual stimuli. Single-pulse stimuli and burst stimuli with low intraburst frequency down-regulate synapses between neurons receiving stimuli simultaneously. In contrast, burst stimuli with high intraburst frequency up-regulate these synapses. We derive theoretical approximations of the stimulation-induced network structure. This enables us to formulate stimulation strategies for inducing a variety of network structures. Our results provide testable hypotheses for future pre-clinical and clinical studies and suggest that periodic multichannel stimulation may be suitable for reshaping plastic neuronal networks to counteract pathological synaptic connectivity. Furthermore, we provide novel insight on how the stimulus type may affect the long-lasting outcome of conventional DBS. This may strongly impact parameter adjustment procedures for clinical DBS, which, so far, primarily focused on acute effects of stimulation.


Subject(s)
Models, Neurological , Parkinson Disease , Animals , Plastics , Neurons/physiology , Synapses/physiology , Neuronal Plasticity/physiology , Action Potentials/physiology
6.
Front Netw Physiol ; 2: 864859, 2022.
Article in English | MEDLINE | ID: mdl-36926109

ABSTRACT

Hypersynchrony of neuronal activity is associated with several neurological disorders, including essential tremor and Parkinson's disease (PD). Chronic high-frequency deep brain stimulation (HF DBS) is the standard of care for medically refractory PD. Symptoms may effectively be suppressed by HF DBS, but return shortly after cessation of stimulation. Coordinated reset (CR) stimulation is a theory-based stimulation technique that was designed to specifically counteract neuronal synchrony by desynchronization. During CR, phase-shifted stimuli are delivered to multiple neuronal subpopulations. Computational studies on CR stimulation of plastic neuronal networks revealed long-lasting desynchronization effects obtained by down-regulating abnormal synaptic connectivity. This way, networks are moved into attractors of stable desynchronized states such that stimulation-induced desynchronization persists after cessation of stimulation. Preclinical and clinical studies confirmed corresponding long-lasting therapeutic and desynchronizing effects in PD. As PD symptoms are associated with different pathological synchronous rhythms, stimulation-induced long-lasting desynchronization effects should favorably be robust to variations of the stimulation frequency. Recent computational studies suggested that this robustness can be improved by randomizing the timings of stimulus deliveries. We study the long-lasting effects of CR stimulation with randomized stimulus amplitudes and/or randomized stimulus timing in networks of leaky integrate-and-fire (LIF) neurons with spike-timing-dependent plasticity. Performing computer simulations and analytical calculations, we study long-lasting desynchronization effects of CR with and without randomization of stimulus amplitudes alone, randomization of stimulus times alone as well as the combination of both. Varying the CR stimulation frequency (with respect to the frequency of abnormal target rhythm) and the number of separately stimulated neuronal subpopulations, we reveal parameter regions and related mechanisms where the two qualitatively different randomization mechanisms improve the robustness of long-lasting desynchronization effects of CR. In particular, for clinically relevant parameter ranges double-random CR stimulation, i.e., CR stimulation with the specific combination of stimulus amplitude randomization and stimulus time randomization, may outperform regular CR stimulation with respect to long-lasting desynchronization. In addition, our results provide the first evidence that an effective reduction of the overall stimulation current by stimulus amplitude randomization may improve the frequency robustness of long-lasting therapeutic effects of brain stimulation.

7.
Front Physiol ; 12: 719680, 2021.
Article in English | MEDLINE | ID: mdl-34630142

ABSTRACT

Abnormally strong synchronized activity is related to several neurological disorders, including essential tremor, epilepsy, and Parkinson's disease. Chronic high-frequency deep brain stimulation (HF DBS) is an established treatment for advanced Parkinson's disease. To reduce the delivered integral electrical current, novel theory-based stimulation techniques such as coordinated reset (CR) stimulation directly counteract the abnormal synchronous firing by delivering phase-shifted stimuli through multiple stimulation sites. In computational studies in neuronal networks with spike-timing-dependent plasticity (STDP), it was shown that CR stimulation down-regulates synaptic weights and drives the network into an attractor of a stable desynchronized state. This led to desynchronization effects that outlasted the stimulation. Corresponding long-lasting therapeutic effects were observed in preclinical and clinical studies. Computational studies suggest that long-lasting effects of CR stimulation depend on the adjustment of the stimulation frequency to the dominant synchronous rhythm. This may limit clinical applicability as different pathological rhythms may coexist. To increase the robustness of the long-lasting effects, we study randomized versions of CR stimulation in networks of leaky integrate-and-fire neurons with STDP. Randomization is obtained by adding random jitters to the stimulation times and by shuffling the sequence of stimulation site activations. We study the corresponding long-lasting effects using analytical calculations and computer simulations. We show that random jitters increase the robustness of long-lasting effects with respect to changes of the number of stimulation sites and the stimulation frequency. In contrast, shuffling does not increase parameter robustness of long-lasting effects. Studying the relation between acute, acute after-, and long-lasting effects of stimulation, we find that both acute after- and long-lasting effects are strongly determined by the stimulation-induced synaptic reshaping, whereas acute effects solely depend on the statistics of administered stimuli. We find that the stimulation duration is another important parameter, as effective stimulation only entails long-lasting effects after a sufficient stimulation duration. Our results show that long-lasting therapeutic effects of CR stimulation with random jitters are more robust than those of regular CR stimulation. This might reduce the parameter adjustment time in future clinical trials and make CR with random jitters more suitable for treating brain disorders with abnormal synchronization in multiple frequency bands.

8.
Front Physiol ; 12: 624317, 2021.
Article in English | MEDLINE | ID: mdl-33889086

ABSTRACT

BACKGROUND: Abnormal synchronization of neuronal activity in dopaminergic circuits is related to motor impairment in Parkinson's disease (PD). Vibrotactile coordinated reset (vCR) fingertip stimulation aims to counteract excessive synchronization and induce sustained unlearning of pathologic synaptic connectivity and neuronal synchrony. Here, we report two clinical feasibility studies that examine the effect of regular and noisy vCR stimulation on PD motor symptoms. Additionally, in one clinical study (study 1), we examine cortical beta band power changes in the sensorimotor cortex. Lastly, we compare these clinical results in relation to our computational findings. METHODS: Study 1 examines six PD patients receiving noisy vCR stimulation and their cortical beta power changes after 3 months of daily therapy. Motor evaluations and at-rest electroencephalographic (EEG) recordings were assessed off medication pre- and post-noisy vCR. Study 2 follows three patients for 6+ months, two of whom received daily regular vCR and one patient from study 1 who received daily noisy vCR. Motor evaluations were taken at baseline, and follow-up visits were done approximately every 3 months. Computationally, in a network of leaky integrate-and-fire (LIF) neurons with spike timing-dependent plasticity, we study the differences between regular and noisy vCR by using a stimulus model that reproduces experimentally observed central neuronal phase locking. RESULTS: Clinically, in both studies, we observed significantly improved motor ability. EEG recordings observed from study 1 indicated a significant decrease in off-medication cortical sensorimotor high beta power (21-30 Hz) at rest after 3 months of daily noisy vCR therapy. Computationally, vCR and noisy vCR cause comparable parameter-robust long-lasting synaptic decoupling and neuronal desynchronization. CONCLUSION: In these feasibility studies of eight PD patients, regular vCR and noisy vCR were well tolerated, produced no side effects, and delivered sustained cumulative improvement of motor performance, which is congruent with our computational findings. In study 1, reduction of high beta band power over the sensorimotor cortex may suggest noisy vCR is effectively modulating the beta band at the cortical level, which may play a role in improved motor ability. These encouraging therapeutic results enable us to properly plan a proof-of-concept study.

9.
Chem Rev ; 121(3): 1203-1231, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33305957

ABSTRACT

The deployment of many-body quantum chemistry methods onto massively parallel high-performance computing (HPC) platforms is reviewed. The particular focus is on highly accurate methods that have become popular in predictive description of chemical phenomena, such as the coupled-cluster method. The account of relevant literature is preceded by a discussion of the modern and near-future HPC landscape and the relevant computational traits of the many-body methods, in their canonical and reduced-scaling formulations, that underlie the challenges in their HPC realization.

10.
Chaos ; 30(8): 083134, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32872805

ABSTRACT

Excessive neuronal synchrony is a hallmark of several neurological disorders, e.g., Parkinson's disease. An established treatment for medically refractory Parkinson's disease is high-frequency deep brain stimulation. However, it provides only acute relief, and symptoms return shortly after cessation of stimulation. A theory-based approach called coordinated reset (CR) has shown great promise in achieving long-lasting effects. During CR stimulation, phase-shifted stimuli are delivered to multiple stimulation sites to counteract neuronal synchrony. Computational studies in plastic neuronal networks reported that synaptic weights reduce during stimulation, which may cause sustained structural changes leading to stabilized desynchronized activity even after stimulation ceases. Corresponding long-lasting effects were found in recent preclinical and clinical studies. We study long-lasting desynchronization by CR stimulation in excitatory recurrent neuronal networks of integrate-and-fire neurons with spike-timing-dependent plasticity (STDP). We focus on the impact of the stimulation frequency and the number of stimulation sites on long-lasting effects. We compare theoretical predictions to simulations of plastic neuronal networks. Our results are important regarding CR calibration for two reasons. We reveal that long-lasting effects become most pronounced when stimulation parameters are adjusted to the characteristics of STDP-rather than to neuronal frequency characteristics. This is in contrast to previous studies where the CR frequency was adjusted to the dominant neuronal rhythm. In addition, we reveal a nonlinear dependence of long-lasting effects on the number of stimulation sites and the CR frequency. Intriguingly, optimal long-lasting desynchronization does not require larger numbers of stimulation sites.


Subject(s)
Models, Neurological , Parkinson Disease , Action Potentials , Humans , Neuronal Plasticity , Neurons , Parkinson Disease/therapy
11.
J Chem Phys ; 153(4): 044120, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32752656

ABSTRACT

The Massively Parallel Quantum Chemistry (MPQC) program is a 30-year-old project that enables facile development of electronic structure methods for molecules for efficient deployment to massively parallel computing architectures. Here, we describe the historical evolution of MPQC's design into its latest (fourth) version, the capabilities and modular architecture of today's MPQC, and how MPQC facilitates rapid composition of new methods as well as its state-of-the-art performance on a variety of commodity and high-end distributed-memory computer platforms.

12.
Phys Rev Lett ; 124(11): 118101, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-32242704

ABSTRACT

We present a theory of chemokinetic search agents that regulate directional fluctuations according to distance from a target. A dynamic scattering effect reduces the probability to penetrate regions with high fluctuations and thus reduces search success for agents that respond instantaneously to positional cues. In contrast, agents with internal states that initially suppress chemokinesis can exploit scattering to increase their probability to find the target. Using matched asymptotics between the case of diffusive and ballistic search, we obtain analytic results beyond Fox colored noise approximation.

13.
Front Physiol ; 11: 622620, 2020.
Article in English | MEDLINE | ID: mdl-33613303

ABSTRACT

Excessive neuronal synchrony is a hallmark of neurological disorders such as epilepsy and Parkinson's disease. An established treatment for medically refractory Parkinson's disease is high-frequency (HF) deep brain stimulation (DBS). However, symptoms return shortly after cessation of HF-DBS. Recently developed decoupling stimulation approaches, such as Random Reset (RR) stimulation, specifically target pathological connections to achieve long-lasting desynchronization. During RR stimulation, a temporally and spatially randomized stimulus pattern is administered. However, spatial randomization, as presented so far, may be difficult to realize in a DBS-like setup due to insufficient spatial resolution. Motivated by recently developed segmented DBS electrodes with multiple stimulation sites, we present a RR stimulation protocol that copes with the limited spatial resolution of currently available depth electrodes for DBS. Specifically, spatial randomization is realized by delivering stimuli simultaneously to L randomly selected stimulation sites out of a total of M stimulation sites, which will be called L/M-RR stimulation. We study decoupling by L/M-RR stimulation in networks of excitatory integrate-and-fire neurons with spike-timing dependent plasticity by means of theoretical and computational analysis. We find that L/M-RR stimulation yields parameter-robust decoupling and long-lasting desynchronization. Furthermore, our theory reveals that strong high-frequency stimulation is not suitable for inducing long-lasting desynchronization effects. As a consequence, low and high frequency L/M-RR stimulation affect synaptic weights in qualitatively different ways. Our simulations confirm these predictions and show that qualitative differences between low and high frequency L/M-RR stimulation are present across a wide range of stimulation parameters, rendering stimulation with intermediate frequencies most efficient. Remarkably, we find that L/M-RR stimulation does not rely on a high spatial resolution, characterized by the density of stimulation sites in a target area, corresponding to a large M. In fact, L/M-RR stimulation with low resolution performs even better at low stimulation amplitudes. Our results provide computational evidence that L/M-RR stimulation may present a way to exploit modern segmented lead electrodes for long-lasting therapeutic effects.

14.
Article in English | MEDLINE | ID: mdl-31579273

ABSTRACT

We present time-domain electrical measurements and simulations of the quantized voltage pulses that are generated from series-connected Josephson junction (JJ) arrays. The transmission delay of the JJ array can lead to a broadening of the net output pulse, depending on the direction of the output pulse propagation relative to the input bias pulse. To demonstrate this, we compare time-domain measurements of output pulses from radio-frequency Josephson Arbitrary Waveform Synthesizer (RF-JAWS) circuits fabricated with two different output measurement configurations, so that the backward-propagating and forward-propagating pulses can be measured. Measurements were made on arrays with 1200 and 3600 JJs and show that the net backward-propagating output pulse is broadened by timing delays in the JJ array while the net forward-propagating output pulse is insensitive to delay effects and can theoretically be further scaled to longer JJ array lengths without significant output pulse broadening. These measurements match well with simulations and confirm the expectation that the net output pulses arise from the time-delayed superposition of individual JJ output pulses from the series array of JJs. The measurements and analysis shown here have important implications for the realization of RF-JAWS circuits to be used as quantum-based reference sources for communications metrology.

15.
Alzheimers Dement (N Y) ; 4: 521-534, 2018.
Article in English | MEDLINE | ID: mdl-30386817

ABSTRACT

INTRODUCTION: The abnormal hyperphosphorylation of the microtubule-associated protein tau plays a crucial role in neurodegeneration in Alzheimer's disease (AD) and other tauopathies. METHODS: Highly specific and selective anti-pS396-tau antibodies have been generated using peptide immunization with screening against pathologic hyperphosphorylated tau from rTg4510 mouse and AD brains and selection in in vitro and in vivo tau seeding assays. RESULTS: The antibody C10.2 bound specifically to pS396-tau with an IC50 of 104 pM and detected preferentially hyperphosphorylated tau aggregates from AD brain with an IC50 of 1.2 nM. C10.2 significantly reduced tau seeding of P301L human tau in HEK293 cells, murine cortical neurons, and mice. AD brain extracts depleted with C10.2 were not able to seed tau in vitro and in vivo, demonstrating that C10.2 specifically recognized pathologic seeding-competent tau. DISCUSSION: Targeting pS396-tau with an antibody like C10.2 may provide therapeutic benefit in AD and other tauopathies.

16.
PLoS Comput Biol ; 14(4): e1006109, 2018 04.
Article in English | MEDLINE | ID: mdl-29672515

ABSTRACT

To navigate their surroundings, cells rely on sensory input that is corrupted by noise. In cells performing chemotaxis, such noise arises from the stochastic binding of signalling molecules at low chemoattractant concentrations. We reveal a fundamental relationship between the speed of chemotactic steering and the strength of directional fluctuations that result from the amplification of noise in a chemical input signal. This relation implies a trade-off between steering that is slow and reliable, and steering that is fast but less reliable. We show that dynamic switching between these two modes of steering can substantially increase the probability to find a target, such as an egg to be found by sperm cells. This decision making confers no advantage in the absence of noise, but is beneficial when chemical signals are detectable, yet characterized by low signal-to-noise ratios. The latter applies at intermediate distances from a target, where signalling molecules are diluted, thus defining a 'noise zone' that cells have to cross. Our results explain decision making observed in recent experiments on sea urchin sperm chemotaxis. More generally, our theory demonstrates how decision making enables chemotactic agents to cope with high levels of noise in gradient sensing by dynamically adjusting the persistence length of a biased random walk.


Subject(s)
Chemotaxis/physiology , Models, Biological , Spermatozoa/physiology , Animals , Arbacia/physiology , Chemotactic Factors/physiology , Computational Biology , Decision Making , Male , Markov Chains , Signal Transduction , Sperm Motility/physiology , Stochastic Processes
17.
J Math Biol ; 77(2): 377-419, 2018 08.
Article in English | MEDLINE | ID: mdl-29353313

ABSTRACT

Multimodality is a phenomenon which complicates the analysis of statistical data based exclusively on mean and variance. Here, we present criteria for multimodality in hierarchic first-order reaction networks, consisting of catalytic and splitting reactions. Those networks are characterized by independent and dependent subnetworks. First, we prove the general solvability of the Chemical Master Equation (CME) for this type of reaction network and thereby extend the class of solvable CME's. Our general solution is analytical in the sense that it allows for a detailed analysis of its statistical properties. Given Poisson/deterministic initial conditions, we then prove the independent species to be Poisson/binomially distributed, while the dependent species exhibit generalized Poisson/Khatri Type B distributions. Generalized Poisson/Khatri Type B distributions are multimodal for an appropriate choice of parameters. We illustrate our criteria for multimodality by several basic models, as well as the well-known two-stage transcription-translation network and Bateman's model from nuclear physics. For both examples, multimodality was previously not reported.


Subject(s)
Models, Biological , Biocatalysis , Biochemical Phenomena , Computer Simulation , Kinetics , Linear Models , Mathematical Concepts , Metabolic Networks and Pathways , Models, Chemical , Poisson Distribution , Probability , Protein Biosynthesis , Transcription, Genetic
18.
Article in English | MEDLINE | ID: mdl-28736494

ABSTRACT

We describe the implementation of new commercial pulse-bias electronics that have enabled an improvement in the generation of quantum-accurate waveforms both with and without low-frequency compensation biases. We have used these electronics to apply a multilevel pulse bias to the Josephson arbitrary waveform synthesizer and have generated, for the first time, a quantum-accurate bipolar sinusoidal waveform without the use of a low-frequency compensation bias current. This uncompensated 1 kHz waveform was synthesized with an rms amplitude of 325 mV and maintained its quantum accuracy over a1.5 mA operating current range. The same technique and equipment was also used to synthesize a quantum-accurate 1 MHz sinusoid with a 1.2 mA operating margin. In addition, we have synthesized a compensated 1 kHz sinusoid with an rms amplitude of 1 V and a 2.7 mA operating margin.

19.
J Phys Chem A ; 120(51): 10231-10244, 2016 Dec 29.
Article in English | MEDLINE | ID: mdl-27966947

ABSTRACT

A new distributed-memory massively parallel implementation of standard and explicitly correlated (F12) coupled-cluster singles and doubles (CCSD) with canonical O(N6) computational complexity is described. The implementation is based on the TiledArray tensor framework. Novel features of the implementation include (a) all data greater than O(N) is distributed in memory and (b) the mixed use of density fitting and integral-driven formulations that optionally allows to avoid storage of tensors with three and four unoccupied indices. Excellent strong scaling is demonstrated on a multicore shared-memory computer, a commodity distributed-memory computer, and a national-scale supercomputer. The performance on a shared-memory computer is competitive with the popular CCSD implementations in ORCA and Psi4. Moreover, the CCSD performance on a commodity-size cluster significantly improves on the state-of-the-art package NWChem. The large-scale parallel explicitly correlated coupled-cluster implementation makes routine accurate estimation of the coupled-cluster basis set limit for molecules with 20 or more atoms. Thus, it can provide valuable benchmarks for the merging reduced-scaling coupled-cluster approaches. The new implementation allowed us to revisit the basis set limit for the CCSD contribution to the binding energy of π-stacked uracil dimer, a challenging paradigm of π-stacking interactions from the S66 benchmark database. The revised value for the CCSD correlation binding energy obtained with the help of quadruple-ζ CCSD computations, -8.30 ± 0.02 kcal/mol, is significantly different from the S66 reference value, -8.50 kcal/mol, as well as other CBS limit estimates in the recent literature.

20.
J Chem Theory Comput ; 12(12): 5868-5880, 2016 Dec 13.
Article in English | MEDLINE | ID: mdl-27783506

ABSTRACT

We describe the clustered low-rank (CLR) framework for block-sparse and block-low-rank tensor representation and computation. The CLR framework exploits the tensor structure revealed by basis clustering; computational savings arise from low-rank compression of tensor blocks and performing block arithmetic in the low-rank form whenever beneficial. The precision is rigorously controlled by two parameters, avoiding ad-hoc heuristics, such as domains: one controls the CLR block rank truncation, and the other controls screening of small contributions in arithmetic operations on CLR tensors to propagate sparsity through expressions. As these parameters approach zero, the CLR representation and arithmetic become exact. As a pilot application, we considered the use of the CLR format for the order-2 and order-3 tensors in the context of the density fitting (DF) evaluation of the Hartree-Fock (exact) exchange (DF-K). Even for small systems and realistic basis sets, CLR-DF-K becomes more efficient than the standard DF-K approach, and it has significantly reduced asymptotic storage and computational complexities relative to the standard [Formula: see text] and [Formula: see text] DF-K figures. CLR-DF-K is also significantly more efficient-all while negligibly affecting molecular energies and properties-than the conventional (non-DF) [Formula: see text] exchange algorithm for applications to medium-sized systems (on the order of 100 atoms) with diffuse Gaussian basis sets, a necessity for applications to negatively charged species, molecular properties, and high-accuracy correlated wave functions.

SELECTION OF CITATIONS
SEARCH DETAIL
...