Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis (Tokyo) ; 25(6): 1329-1342, 2022.
Article in English | MEDLINE | ID: mdl-35845181

ABSTRACT

Abstract: The recent development in the data analytics field provides a boost in production for modern industries. Small-sized factories intend to take full advantage of the data collected by sensors used in their machinery. The ultimate goal is to minimize cost and maximize quality, resulting in an increase in profit. In collaboration with domain experts, we implemented a data visualization tool to enable decision-makers in a plastic factory to improve their production process. The tool is an interactive dashboard with multiple coordinated views supporting the exploration from both local and global perspectives. In summary, we investigate three different aspects: methods for preprocessing multivariate time series data, clustering approaches for the already refined data, and visualization techniques that aid domain experts in gaining insights into the different stages of the production process. Here we present our ongoing results grounded in a human-centered development process. We adopt a formative evaluation approach to continuously upgrade our dashboard design that eventually meets partners' requirements and follows the best practices within the field. We also conducted a case study with a domain expert to validate the potential application of the tool in the real-life context. Finally, we assessed the usability and usefulness of the tool with a two-layer summative evaluation that showed encouraging results.

2.
JMIR Form Res ; 6(6): e31485, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35679097

ABSTRACT

BACKGROUND: Parkinson disease (PD) is a chronic degenerative disorder that causes progressive neurological deterioration with profound effects on the affected individual's quality of life. Therefore, there is an urgent need to improve patient empowerment and clinical decision support in PD care. Home-based disease monitoring is an emerging information technology with the potential to transform the care of patients with chronic illnesses. Its acceptance and role in PD care need to be elucidated both among patients and caregivers. OBJECTIVE: Our main objective was to develop a novel home-based monitoring system (named EMPARK) with patient and clinician interface to improve patient empowerment and clinical care in PD. METHODS: We used elements of design science research and user-centered design for requirement elicitation and subsequent information and communications technology (ICT) development. Functionalities of the interfaces were the subject of user-centric multistep evaluation complemented by semantic analysis of the recorded end-user reactions. The ICT structure of EMPARK was evaluated using the ICT for patient empowerment model. RESULTS: Software and hardware system architecture for the collection and calculation of relevant parameters of disease management via home monitoring were established. Here, we describe the patient interface and the functional characteristics and evaluation of a novel clinician interface. In accordance with our previous findings with regard to the patient interface, our current results indicate an overall high utility and user acceptance of the clinician interface. Special characteristics of EMPARK in key areas of interest emerged from end-user evaluations, with clear potential for future system development and deployment in daily clinical practice. Evaluation through the principles of ICT for patient empowerment model, along with prior findings from patient interface evaluation, suggests that EMPARK has the potential to empower patients with PD. CONCLUSIONS: The EMPARK system is a novel home monitoring system for providing patients with PD and the care team with feedback on longitudinal disease activities. User-centric development and evaluation of the system indicated high user acceptance and usability. The EMPARK infrastructure would empower patients and could be used for future applications in daily care and research.

3.
IEEE Trans Vis Comput Graph ; 24(7): 2180-2193, 2018 07.
Article in English | MEDLINE | ID: mdl-28650817

ABSTRACT

Memory performance is often a major bottleneck for high-performance computing (HPC) applications. Deepening memory hierarchies, complex memory management, and non-uniform access times have made memory performance behavior difficult to characterize, and users require novel, sophisticated tools to analyze and optimize this aspect of their codes. Existing tools target only specific factors of memory performance, such as hardware layout, allocations, or access instructions. However, today's tools do not suffice to characterize the complex relationships between these factors. Further, they require advanced expertise to be used effectively. We present MemAxes, a tool based on a novel approach for analytic-driven visualization of memory performance data. MemAxes uniquely allows users to analyze the different aspects related to memory performance by providing multiple visual contexts for a centralized dataset. We define mappings of sampled memory access data to new and existing visual metaphors, each of which enabling a user to perform different analysis tasks. We present methods to guide user interaction by scoring subsets of the data based on known performance problems. This scoring is used to provide visual cues and automatically extract clusters of interest. We designed MemAxes in collaboration with experts in HPC and demonstrate its effectiveness in case studies.

4.
IEEE Trans Vis Comput Graph ; 20(12): 2349-58, 2014 Dec.
Article in English | MEDLINE | ID: mdl-26356949

ABSTRACT

With the continuous rise in complexity of modern supercomputers, optimizing the performance of large-scale parallel programs is becoming increasingly challenging. Simultaneously, the growth in scale magnifies the impact of even minor inefficiencies--potentially millions of compute hours and megawatts in power consumption can be wasted on avoidable mistakes or sub-optimal algorithms. This makes performance analysis and optimization critical elements in the software development process. One of the most common forms of performance analysis is to study execution traces, which record a history of per-process events and interprocess messages in a parallel application. Trace visualizations allow users to browse this event history and search for insights into the observed performance behavior. However, current visualizations are difficult to understand even for small process counts and do not scale gracefully beyond a few hundred processes. Organizing events in time leads to a virtually unintelligible conglomerate of interleaved events and moderately high process counts overtax even the largest display. As an alternative, we present a new trace visualization approach based on transforming the event history into logical time inferred directly from happened-before relationships. This emphasizes the code's structural behavior, which is much more familiar to the application developer. The original timing data, or other information, is then encoded through color, leading to a more intuitive visualization. Furthermore, we use the discrete nature of logical timelines to cluster processes according to their local behavior leading to a scalable visualization of even long traces on large process counts. We demonstrate our system using two case studies on large-scale parallel codes.

5.
Front Microbiol ; 4: 162, 2013.
Article in English | MEDLINE | ID: mdl-23785367

ABSTRACT

BACKGROUND: Urinary tract infections (UTIs) are a very most common type of infection worldwide, and result in billions of dollars in medical care costs. Escherichia coli is the infective agent for 80-90% of all UTIs. Green tea, derived from leaves of the Camellia sinensis plant has been shown to have various potential health benefits (e.g., cardiovascular disease and cancer). The major beneficial components of green tea have been characterized, and are now known to be polyphenolic catechins. The main catechins in green tea are (-)-epicatechin-3-gallate, (-)-epigallocatechin (EGC), (-)-epicatechin, and (-)-epigallocatechin-3-gallate (EGCG). EGCG and EGC have been shown to have the greatest antimicrobial effects, but only EGC has been shown to be excreted in urine. Isolates of E. coli from UTIs collected between 2007 and 2008 were characterized for antimicrobial resistance to standard drugs. Then 80 of these isolates, representing a wide spectrum of antimicrobial susceptibility patterns, were selected for testing using an extract of green tea. RESULTS: The concentrations of green tea extract tested were 0, 2.5, 3.0, 3.5, and 4.0 mg/ml. All of the strains tested, except one, had minimum inhibitory concentrations (MICs) of ≤4.0 mg/ml (99%), with 94% of the isolates having an MIC of ≤3.5 mg/ml, 76% of the isolates having an MIC of ≤3.0 mg/ml, 40% of the isolates having an MIC of ≤2.5 mg/ml. Two control strains varied in susceptibility, one having an MIC of ≤2.5 mg/ml,and the other having an MIC of ≤3.5 mg/ml. CONCLUSION: Since EGC has been shown to have antimicrobial effects on E. coli, and EGC has been shown to be excreted in the urine in a high enough concentration to potentially be effective as an antimicrobial; these MIC results suggest that ingesting green tea could have potential antimicrobial effects on UTIs caused by E. coli.

SELECTION OF CITATIONS
SEARCH DETAIL
...