Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 112(50): 12896-903, 2008 Dec 18.
Article in English | MEDLINE | ID: mdl-18593141

ABSTRACT

The key step in the mechanism of the Palladium-catalyzed homocoupling of arylboronic acids ArB(OH)(2)(Ar = 4-Z-C(6)H(4) with Z = MeO, H, CN) in the presence of dioxygen, leading to symmetrical biaryls, has been elucidated by using density functional theory. In particular, by starting from the peroxo complex O(2)PdL(2)(L = PPh(3)), generated in the reaction of dioxygen with the Pd(0) catalyst, the fundamental role played by an intermediate formed by coordination of one oxygen atom of the peroxo complex to the oxophilic boron atom of the arylboronic acid has been pointed out. This adduct reacts with a second molecule of arylboronic acid to generate a cis-Ar-Pd(OOB(OH)(2))L(2) complex that can form the stable intermediate trans-Ar-Pd(OH)L(2) (experimentally characterized) through a sequence of hydrolysis and isomerization reactions. All theoretical insights are in agreement and do substantiate the experimentally postulated mechanism. Furthermore, direct comparison of experimental and computed spectroscopic parameters (here, (31)P chemical shifts) allows us to confirm the formation of the intermediate.

2.
Chemistry ; 7(10): 2134-42, 2001 May 18.
Article in English | MEDLINE | ID: mdl-11411986

ABSTRACT

The oxidative addition of phenyl iodide to the palladium(o) generated from [Pd0(dba)2] and n equivalents of AsPh3 (the most efficient catalytic precursor in Stille reactions) proceeds from [(solv)Pd0(AsPh3)2] (solv= solvent). However, the latter is present only in trace concentrations because it is involved in an equilibrium with the major, but nonreactive, complex [Pd0(dba)(AsPh3)2]. As regards the phosphine ligands, dba has a decelerating effect on the rate of the oxidative addition by decreasing the concentration of the reactive species. Relative to PPh3, the effect of AsPh3 is to increase the rate of the oxidative addition of PhI by a factor ten in DMF and seven in THF, independent of the value of n, provided that n > or = 2. In contrast to PPh3, the addition of more than two equivalents of AsPh3 to [Pd0(dba)2] (dba= trans,trans-dibenzylideneacetone) does not affect the kinetics of the oxidative addition because of the very endergonic displacement of dba from [Pd0(dba)(AsPh3)2] to form [Pd0(AsPh3)3]. The complex trans-[PhPdI(AsPh3)2], formed in the oxidative addition, is involved in a slow equilibrium with the T-shaped complex [PhPdI(AsPh3)] after appreciable decomplexation of one AsPh3. Under catalytic conditions, that is, in the presence of a nucleophile, such as CH2=CH-SnBu3 which is able to coordinate to [Pd0(AsPh3)2], a new Pd0 complex is formed: [Pd0(eta2-CH2=CHSnBu3)(AsPh3)2]; however, this complex does not react with PhI. Consequently, CH2=CH-SnBu3 slows down the oxidative addition by decreasing the concentration of the reactive species [(solv)Pd0(AsPh3)2]. This demonstrates that a nucleophile may be not only involved in the transmetallation step, but may also interfere in the kinetics of the oxidative addition step by decreasing the concentration of reactive Pd0.

3.
Chemistry ; 7(6): 1273-80, 2001 Mar 16.
Article in English | MEDLINE | ID: mdl-11322554

ABSTRACT

The oxidative addition of the allylic acetate, CH2=CH-CH2-OAc, to the palladium(o) complex [Pd0(P,P)], generated from the reaction of [Pd(dba)2, with one equivalent of P,P (P,P = dppb = 1,4-bis(diphenylphosphanyl)butane, and P,P = dppf = 1,1'-bis(diphenylphosphanyl)ferrocene), gives a cationic (eta3-allyl)palladium(II) complex, [(eta3-C3H5)Pd(P,P)+]. with AcO as the counter anion. This reaction is reversible and proceeds through two successive equilibria. The overall equilibrium constants have been determined in DMF. Compared with PPh3, the overall equilibrium lies more in favor of the cationic (eta3-allyl)palladium(II) complex when bidentate P,P ligands are considered in the order: dppb > dppf > PPh3. The reaction proceeds via a neutral intermediate complex [(eta2-CH=CH-CHCH2-OAc)Pd0(P,P)], which has been kinetically detected. The rate constants of the successive steps have been determined in DMF by UV spectroscopy and conductivity measurements. The overall complexation step of the Pd0 by the allylic acetate C=C bond is faster than the oxidative addition/ionization step which gives the cationic (eta3-allyl)palladium(II) complex.

4.
Chemistry ; 6(18): 3372-6, 2000 Sep 15.
Article in English | MEDLINE | ID: mdl-11039529

ABSTRACT

The oxidative addition of a cyclic allylic carbonate to the palladium(0) complex generated from a [Pd(dba)2]+2 PPh3 mixture affords a cationic pi-allylpalladium(II) complex with the alkyl carbonate as the counter-anion. This reaction is reversible and proceeds with isomerization of the allylic carbonate at the allylic position. The equilibrium constant has been determined in DMF. The influence of the precursor of the palladium(0) is discussed.

5.
Chemistry ; 6(8): 1474-82, 2000 Apr 14.
Article in English | MEDLINE | ID: mdl-10840970

ABSTRACT

The major complex formed in solution from [[Pd0(dba)2]+1P-N] mixtures is [Pd0(dba)(P-N)] (dba=trans,trans-dibenzylideneacetone; P-N=PhPN, 1-dimethylamino-2-diphenylphosphinobenzene; FcPN, N,N-dimethyl-1-[2-(diphenylphosphino)ferrocenyl]methylamine; OxaPN, 4,4'-dimethyl-2-(2-diphenylphosphinophenyl)-1,3-oxazoline). Each complex consists of a mixture of isomers involved in equilibria: two 16-electron rotamer complexes [Pd0(eta2-dba)(eta2-P-N)] and one 14-electron complex [Pd0(eta2-dba)(eta1-P-N)] observed for FcPN and OxaPN. [Pd0(dba)(PhPN)] and [SPd0(PhPN)] (S solvent) react with PhI in an oxidative addition: [SPd0(PhPN)] is intrinsically more reactive than [Pd0(dba)(PhPN)]. This behavior is similar to that of the bidentate bis-phosphane ligands. When the PhPN ligand is present in excess, it behaves as a monodentate phosphane ligand, since [Pd0(eta2-dba)(eta1-PhPN)2] is formed first by preferential cleavage of the Pd-N bond instead of the Pd olefin bond. [Pd0(eta1-PhPN)3] is also eventually formed. [Pd0(dba)(FcPN)] and [Pd0(dba)(OxaPN)] are formed whatever the excess of ligand used. [SPd0(FcPN)] and [SPd0)(OxaPN)] are not involved in the oxidative addition. The 16-electron complexes [Pd0(eta2-dba)(eta2-FcPN)] and [Pd0(eta2-dba)(eta2-OxaPN)] are found to react with PhI via a 14-electron complex as has been established for [Pd0(eta2-dba)(eta1-OxaPN)]. Once again, the cleavage of the Pd-N bond is favored over that of Pd-olefin bond. This work demonstrates the higher affinity for [Pd0(P-N)] of dba compared with the P-N ligand, and emphasizes once more the important role of dba, which either controls the concentration of the most reactive complex, [SPd0(PhPN)], or is present in the reactive complexes, [Pd0(dba)(FcPN)] or [Pd0(dba)(OxaPN)], and thus contributes to their intrinsic reactivity.

6.
Acc Chem Res ; 33(5): 314-21, 2000 May.
Article in English | MEDLINE | ID: mdl-10813876

ABSTRACT

The anions of PdCl(2)L(2) and Pd(OAc)(2), precursors of palladium(0) used in cross-coupling and Heck reactions, play a crucial role in these reactions. Tricoordinated anionic complexes Pd(0)L(2)Cl(-) and Pd(0)L(2)(OAc)(-) are the effective catalysts instead of the usually postulated Pd(0)L(2) complex. The anion ligated to the palladium(0) affects the kinetics of the oxidative addition to ArI as well as the structure and reactivity of the arylpalladium(II) complexes produced in this reaction. Thus, pentacoordinated anionic complexes are formed, ArPdI(Cl)L(2)(-) or ArPdI(OAc)L(2)(-), the precursor of neutral trans-ArPd(OAc)L(2), instead of the usually postulated trans-ArPdIL(2) complex (L = PPh(3)).


Subject(s)
Palladium/chemistry , Anions/chemistry , Electrochemistry , Iodides/chemistry , Kinetics , Oxidation-Reduction , Styrenes/chemistry
7.
Carbohydr Res ; 244(2): 237-46, 1993 Jun 21.
Article in English | MEDLINE | ID: mdl-8348551

ABSTRACT

Constant current electrolyses of the glycosyl donors phenyl and ethyl 2,3,4,6-tetra-O-benzyl-1-thio-beta-D-glucopyranoside in dry acetonitrile in the presence of various primary and secondary sugar alcohols, performed in an undivided cell, gave beta-linked disaccharide derivatives selectively in good yields. Phenyl 2,3,4,6-tetra-O-benzoyl-1-thio-beta-D-glucopyranoside gave the beta-glucosides exclusively in good to moderate yields.


Subject(s)
Disaccharides/chemical synthesis , Electrolysis , Thioglycosides/chemistry , Carbohydrate Sequence , Molecular Sequence Data , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...