Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 29(1): 1338-1363, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34355326

ABSTRACT

This study investigated experimentally pyrolysis of rubberwood sawdust (RWS), sewage sludge (SS), and their blends (25:75, 50:50, and 75:25 by weight) in an agitated bed pyrolysis reactor. The yields and characteristics of liquid product and biochar were determined for pyrolysis at 450, 500, and 550 °C and were affected both by temperature and feedstock type. The liquid and biochar yields were in the ranges 27.30-52.42 and 21.43-49.66 (wt%). Pyrolysis of RWS at 550 °C provided the highest liquid yield, while SS gave a high biochar yield. Co-pyrolysis of SS with RWS improved yield and quality of liquid and biochar products. The liquid product had 57.54-70.70 wt% of water and a low hydrocarbon content. The higher heating value (HHV) of water-free liquid product was 14.73-22.45 MJ/kg. The major compounds of liquid product included acetic acid, 2-propanone, 1-hydroxy, and phenols according to GC-MS. The biochar from RWS had a high carbon content (83.37 wt%) and a high HHV (33.57 MJ/kg), while SS biochar was mainly ash (67.62 wt%) with low carbon content. The SS biochar also had high contents of Si, Ca, Fe, K, and Mg as determined by XRF. Co-pyrolysis of SS with RWS improved the biochar by increasing its carbon content and reducing ash and inorganic elements. The surface of RWS biochar was more porous, while SS biochar had the larger specific surface according to SEM and BET. Based on these results, co-pyrolysis of 75:25 feedstock mix is recommended for further studies on applications of liquid product and biochar.


Subject(s)
Pyrolysis , Sewage , Biofuels/analysis , Carbon , Charcoal , Wood/chemistry
2.
PLoS One ; 14(5): e0217202, 2019.
Article in English | MEDLINE | ID: mdl-31120923

ABSTRACT

Application of Bacillus cyclic lipopeptides (CLPs); fengycin, iturin A and surfactin has shown a great potential in controlling the spread of green mold pathogen invasion (Penicillium digitatum) in wounded mandarin fruit during postharvest period. The limited defensive protein profiles followed specific expression of pivotal genes relating to plant hormone mediating signaling pathways of the CLPs' action on stimulating host plant resistance have been exhibited. The present study aimed to elucidate the specific effect of individual CLP obtained from Bacillus subtilis ABS-S14 as elicitor role on activation of plant defensive system at transcriptional and proteomic levels with and without P. digitatum co-application in mandarin fruit. Fengycin and iturin A elevated the gene expression of PAL, ACS1, ACO, CHI, and GLU while significantly stimulating plant POD transcription was only detected in the treatments of surfactin both with and without following P. digitatum. An increase of LOX and PR1 gene transcripts was determined in the treatments of individual CLP with fungal pathogen co-application. Fengycin activated production of unique defensive proteins such as protein involved in ubiquinone biosynthetic process in treated flavedo without P. digitatum infection. Proteins involved in the auxin modulating pathway were present in the iturin A and surfactin treatments. CLP-protein binding assay following proteome analysis reveals that iturin A attached to 12-oxophytodienoate reductase 2 involved in the oxylipin biosynthetic process required for jasmonic acid production which is implicated in induced systemic resistance (ISR). This study suggests specific elicitor action of individual CLP, particularly iturin A showed the most powerful in stimulating the ISR system in response to stresses in postharvest mandarins.


Subject(s)
Bacillus subtilis/physiology , Citrus/immunology , Gene Expression Regulation, Plant/drug effects , Lipopeptides/pharmacology , Peptides, Cyclic/pharmacology , Proteome/drug effects , Transcriptome/drug effects , Antifungal Agents/pharmacology , Bacillus subtilis/drug effects , Citrus/drug effects , Citrus/genetics , Citrus/metabolism , Fruit/drug effects , Fruit/immunology , Fruit/metabolism , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Proteome/analysis , Stress, Physiological
3.
Plant Cell Rep ; 38(5): 559-575, 2019 May.
Article in English | MEDLINE | ID: mdl-30715581

ABSTRACT

KEY MESSAGE: Bacillus subtilis CLP extract activates defense gene expression and increases the unique protein production involving in pathways of ISR, SAR, ubiquitin-proteasome system, and glycolysis for stress responses in flavedo tissues. Cyclic lipopeptides (CLPs) of Bacillus subtilis ABS-S14 had ability to activate plant defensive pathways, increase resistance and control green mold rot caused by Penicillium digitatum in mandarin fruit. The current study investigated transcriptional and proteomic data to highlight the unique induction effect of CLPs produced by B. subtilis ABS-S14 on the defense mechanism of mandarins in response to P. digitatum attack, and their differences from those following the exogenous plant hormone application. The proteomic patterns of the flavedo tissues as affected by Bacillus CLP extract, salicylic acid (SA), methyl jasmonate (MeJA), and ethephon (Et) were explored. qPCR analysis revealed the great effects of CLP extract in enhancing the transcription of PAL, ACS1, GLU, POD, and PR1. Tryptic peptides by LC-MS analysis between treatments with and without fungal infection were compared. B. subtilis CLP extract empowered the plant's immune response to wound stress by the significant production of calmodulin-binding receptor-like cytoplasmic kinase 2, molybdenum cofactor sulfurase, and NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase. Ubiquitin carrier protein abundance was developed only in the treated flavedo with CLP extract coupled with P. digitatum infection. The gene expression and overall proteome findings involving pathways of ubiquitin proteasome system, ISR, SAR, and energy production provide a new insight into the molecular mechanisms of the antagonist B. subtilis ABS-S14 inducing resistance against green mold in mandarins.


Subject(s)
Bacillus subtilis/pathogenicity , Bacterial Proteins/metabolism , Citrus/metabolism , Citrus/microbiology , Lipopeptides/metabolism , Peptides, Cyclic/metabolism , Penicillium/pathogenicity , Plant Diseases/microbiology , Plant Growth Regulators/metabolism
4.
Waste Manag Res ; 37(1): 83-94, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30355247

ABSTRACT

The recovery of energy from municipal solid waste (MSW) has gained popularity in many industrialized countries, but its adoption in economically developing countries, especially in Africa, has been slow. While capital investments and technical requirements for waste-to-energy (WtE) systems are among the most important causes for this slow adoption, the unavailability of data on the thermochemical quality of MSW as a potential feedstock for energy recovery is also a limiting factor. In this paper, Harare, a typical African city, was selected as a case study. The evaluation was based on the analysis of the MSW's composition, moisture as-discarded, thermochemical properties and energy content. The results show that the quality of the MSW is comparable to that in regions outside Africa where WtE has been a success. The combustible fraction exceeded 75 wt% making it ideal for thermal treatment without requiring supplementary fuel. With an MSW throughput of 421,757 tonnes year-1 (11.1% of which is recycled), and a lower heating value of 10.1 MJ kg-1, the energetic potential was estimated at 3.8 × 106 GJ. MSW thermal treatment via conventional technologies can reduce the waste throughput to landfills by up to 40%, provide up to 112 GWh year-1 of electrical energy, and increase the annual share of electrical energy produced from bio-fuels and wastes from 1.3% to at least 2.2%. These benefits make thermal MSW treatment a suitable option for waste disposal in African cities.


Subject(s)
Refuse Disposal , Solid Waste , Cities , Waste Disposal Facilities , Zimbabwe
SELECTION OF CITATIONS
SEARCH DETAIL
...