Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Opt Lett ; 43(14): 3445-3448, 2018 Jul 15.
Article in English | MEDLINE | ID: mdl-30004526

ABSTRACT

In this Letter, we describe the behavior of partially coherent, partially polarized focused vector beams after passing a linear polarizer placed at the focal plane of a high numerical aperture microscope lens. In particular, we develop a mathematical framework for such beams that helps the understanding of the performance of polarizers when interact with non-paraxial beams. The features of the focused field after the polarizer are numerically evaluated for some illustrative examples.

2.
Sci Rep ; 8(1): 2657, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29422653

ABSTRACT

We introduce a new method for producing optical needles with tunable length and almost constant irradiance based on the evaluation of the on-axis power content of the light distribution at the focal area. According to theoretical considerations, we propose an adaptive modulating continuous function that presents a large derivative and a zero value jump at the entrance pupil of the focusing system. This distribution is displayed on liquid crystal devices using holographic techniques. In this way, a polarized input beam is shaped and subsequently focused using a high numerical aperture (NA) objective lens. As a result, needles with variable length and nearly constant irradiance are produced using conventional optics components. This procedure is experimentally demonstrated obtaining a 53λ-long and 0.8λ-wide needle.

3.
Sci Rep ; 7: 42122, 2017 02 13.
Article in English | MEDLINE | ID: mdl-28191817

ABSTRACT

Polarisers are one of the most widely used devices in optical set-ups. They are commonly used with paraxial beams that propagate in the normal direction of the polariser plane. Nevertheless, the conventional projection character of these devices may change when the beam impinges a polariser with a certain angle of incidence. This effect is more noticeable if polarisers are used in optical systems with a high numerical aperture, because multiple angles of incidence have to be taken into account. Moreover, the non-transverse character of highly focused beams makes the problem more complex and strictly speaking, the Malus' law does not apply. In this paper we develop a theoretical framework to explain how ideal polarisers affect the behavior of highly focused fields. In this model, the polarisers are considered as birefringent plates, and the vector behaviour of focused fields is described using the plane-wave angular spectrum approach. Experiments involving focused fields were conducted to verify the theoretical model and a satisfactory agreement between theoretical and experimental results was found.

4.
Opt Express ; 24(7): 6793-801, 2016 Apr 04.
Article in English | MEDLINE | ID: mdl-27136978

ABSTRACT

We develop a method for encoding information in the longitudinal component of a focused field. Focused beams display a non-zero contribution of the electric field in the direction of propagation. However, the associated irradiance is very weak and difficult to isolate from the transverse part of the beam. For these reasons, the longitudinal component of a focused field could be a good choice for encoding and securing information. Using the Richards and Wolf formalism we show how to encrypt information in the longitudinal domain of the focal area. In addition, we use quantum imaging techniques to enhance the security and to prevent unauthorized access to the information. To the best of our knowledge, this is the first report on using the longitudinal component of the focused fields in optical security.

5.
Opt Express ; 23(2): 655-66, 2015 Jan 26.
Article in English | MEDLINE | ID: mdl-25835825

ABSTRACT

We present a polarimetric-based optical encoder for image encryption and verification. A system for generating random polarized vector keys based on a Mach-Zehnder configuration combined with translucent liquid crystal displays in each path of the interferometer is developed. Polarization information of the encrypted signal is retrieved by taking advantage of the information provided by the Stokes parameters. Moreover, photon-counting model is used in the encryption process which provides data sparseness and nonlinear transformation to enhance security. An authorized user with access to the polarization keys and the optical design variables can retrieve and validate the photon-counting plain-text. Optical experimental results demonstrate the feasibility of the encryption method.

6.
Opt Lett ; 39(20): 6025-8, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25361146

ABSTRACT

Research on the properties of highly focused fields mainly involved fully polarized light, whereas partially polarized waves received less attention. The aim of this Letter is to provide an appropriate framework, for designing some features of the focused field, when dealing with incoming partially polarized beams. In particular, in this Letter, we describe how to get an unpolarized field on the axis of a high numerical aperture objective lens. Some numerical results that corroborate theoretical predictions are provided.

7.
Opt Express ; 22(6): 6859-67, 2014 Mar 24.
Article in English | MEDLINE | ID: mdl-24664034

ABSTRACT

We develop a method for generating focused vector beams with circular polarization at any transverse plane. Based on the Richards-Wolf vector model, we derive analytical expressions to describe the propagation of these set of beams near the focal area. Since the polarization and the amplitude of the input beam are not uniform, an interferometric system capable of generating spatially-variant polarized beams has to be used. In particular, this wavefront is manipulated by means of spatial light modulators displaying computer generated holograms and subsequently focused using a high numerical aperture objective lens. Experimental results using a NA = 0.85 system are provided: irradiance and Stokes images of the focused field at different planes near the focal plane are presented and compared with those obtained by numerical simulation.

8.
Opt Express ; 22(26): 32419-28, 2014 Dec 29.
Article in English | MEDLINE | ID: mdl-25607204

ABSTRACT

The aim of this paper is to provide a formal framework for designing highly focused fields with specific transversal features when the incoming beam is partially polarized. More specifically, we develop a field with a transversal component that remains unpolarized in the focal area. Special attention is paid to the design of the input beam and the development of the experiment. The implementation of such fields is possible by using an interferometric setup combined with the use of digital holography techniques. Experimental results are compared with those obtained numerically.


Subject(s)
Interferometry/instrumentation , Lasers , Lenses , Lighting/instrumentation , Optical Devices , Computer-Aided Design , Equipment Design , Equipment Failure Analysis
9.
Opt Lett ; 38(12): 2065-7, 2013 Jun 15.
Article in English | MEDLINE | ID: mdl-23938978

ABSTRACT

A method to evaluate the physical realizability of an arbitrary three-dimensional vectorial field distribution in the focal area is proposed. A parameter that measures the similarity between the designed (target) field and the physically achievable beam is provided. This analysis is carried out within the framework of the closest electromagnetic field to a given vectorial function, and the procedure is applied to two illustrative cases.

10.
Opt Express ; 21(5): 5432-9, 2013 Mar 11.
Article in English | MEDLINE | ID: mdl-23482114

ABSTRACT

Methods for generating beams with arbitrary polarization based on the use of liquid crystal displays have recently attracted interest from a wide range of sources. In this paper we present a technique for generating beams with arbitrary polarization and shape distributions at a given plane using a Mach-Zehnder setup. The transverse components of the incident beam are processed independently by means of spatial light modulators placed in each path of the interferometer. The modulators display computer generated holograms designed to dynamically encode any amplitude value and polarization state for each point of the wavefront in a given plane. The steps required to design such beams are described in detail. Several beams performing different polarization and intensity landscapes have been experimentally implemented. The results obtained demonstrate the capability of the proposed technique to tailor the amplitude and polarization of the beam simultaneously.

SELECTION OF CITATIONS
SEARCH DETAIL
...