Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Purinergic Signal ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39046648

ABSTRACT

Purinergic receptors regulate the processing of neural information in the hippocampus and cerebral cortex, structures related to cognitive functions. These receptors are activated when astrocytic and neuronal populations release adenosine triphosphate (ATP) in an autocrine and paracrine manner, following sustained patterns of neuronal activity. The modulation by these receptors of GABAergic transmission has only recently been studied. Through their ramifications, astrocytes and GABAergic interneurons reach large groups of excitatory pyramidal neurons. Their inhibitory effect establishes different synchronization patterns that determine gamma frequency rhythms, which characterize neural activities related to cognitive processes. During early life, GABAergic-mediated synchronization of excitatory signals directs the experience-driven maturation of cognitive development, and dysfunctions concerning this process have been associated with neurological and neuropsychiatric diseases. Purinergic receptors timely modulate GABAergic control over ongoing neural activity and deeply affect neural processing in the hippocampal and neocortical circuitry. Stimulation of A2 receptors increases GABA release from presynaptic terminals, leading to a considerable reduction in neuronal firing of pyramidal neurons. A1 receptors inhibit GABAergic activity but only act in the early postnatal period when GABA produces excitatory signals. P2X and P2Y receptors expressed in pyramidal neurons reduce the inhibitory tone by blocking GABAA receptors. Finally, P2Y receptor activation elicits depolarization of GABAergic neurons and increases GABA release, thus favoring the emergence of gamma oscillations. The present review provides an overall picture of purinergic influence on GABAergic transmission and its consequences on neural processing, extending the discussion to receptor subtypes and their involvement in the onset of brain disorders, including epilepsy and Alzheimer's disease.

2.
Cell Biosci ; 14(1): 82, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890712

ABSTRACT

BACKGROUND: Neural progenitor cells (NPCs) can be cultivated from developing brains, reproducing many of the processes that occur during neural development. They can be isolated from a variety of animal models, such as transgenic mice carrying mutations in amyloid precursor protein (APP) and presenilin 1 and 2 (PSEN 1 and 2), characteristic of familial Alzheimer's disease (fAD). Modulating the development of these cells with inflammation-related peptides, such as bradykinin (BK) and its antagonist HOE-140, enables the understanding of the impact of such molecules in a relevant AD model. RESULTS: We performed a global gene expression analysis on transgenic neurospheres treated with BK and HOE-140. To validate the microarray data, quantitative real-time reverse-transcription polymerase chain reaction (RT-PCR) was performed on 8 important genes related to the immune response in AD such as CCL12, CCL5, CCL3, C3, CX3CR1, TLR2 and TNF alpha and Iba-1. Furthermore, comparative analysis of the transcriptional profiles was performed between treatments, including gene ontology and reactome enrichment, construction and analysis of protein-protein interaction networks and, finally, comparison of our data with human dataset from AD patients. The treatments affected the expression levels of genes mainly related to microglia-mediated neuroinflammatory responses, with BK promoting an increase in the expression of genes that enrich processes, biological pathways, and cellular components related to immune dysfunction, neurodegeneration and cell cycle. B2 receptor inhibition by HOE-140 resulted in the reduction of AD-related anomalies caused in this system. CONCLUSIONS: BK is an important immunomodulatory agent and enhances the immunological changes identified in transgenic neurospheres carrying the genetic load of AD. Bradykinin treatments modulate the expression rates of genes related to microglia-mediated neuroinflammation. Inhibiting bradykinin activity in Alzheimer's disease may slow disease progression.

3.
Stem Cell Rev Rep ; 19(6): 1800-1811, 2023 08.
Article in English | MEDLINE | ID: mdl-37129730

ABSTRACT

Proteins involved in the Alzheimer's disease (AD), such as amyloid precursor protein (APP) and presenilin-1 (PS1), play critical roles in early development of the central nervous system (CNS), as well as in innate immune and glial cell responses. Familial AD is associated with the presence of APPswe and PS1dE9 mutations. However, it is still unknown whether these mutations cause deficits in CNS development of carriers. We studied genome-wide gene expression profiles of differentiated neural progenitor cells (NPCs) from wild-type and APPswe/PS1dE9 mouse embryo telencephalon. The occurrence of strong innate immune and glial cell responses in APPswe/PS1dE9 neurospheres mainly involves microglial activation, inflammatory mediators and chemokines. APPswe/PS1dE9 neurospheres augmented up to 100-fold CCL12, CCL5, CCL3, C3, CX3CR1, TLR2 and TNF-alpha expression levels, when compared to WT neurospheres. Expression levels of the glia cell marker GFAP and microglia marker Iba-1 were up to 20-fold upregulated in APPswe/PS1dE9 neurospheres. The secretome of differentiated APPswe/PS1dE9 NPCs revealed enhanced chemoattraction of peripheral blood mononuclear cells. When evaluating the inferred protein interaction networks constructed from the array data, an improvement in astrocyte differentiation in APPswe/PS1dE9 neurospheres was evident in view of increased GFAP expression. Transgenic NPCs differentiated into neural phenotypes presented expression patterns of cytokine, glial cells, and inflammatory mediators characteristic of APPswe/PS1dE9 adult animals. Consequently, the neurogenic niche obtained from differentiation of embryonic APPswe/PS1dE9 neurospheres spontaneously presents several alterations observed in adult AD brains. Finally, our data strengthen pathophysiological hypotheses that propose an early neurodevelopmental origin for familial AD.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/genetics , Alzheimer Disease/complications , Alzheimer Disease/metabolism , Leukocytes, Mononuclear/metabolism , Mice, Transgenic , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Neuroglia/metabolism , Cell Differentiation/genetics , Inflammation Mediators , Immunity, Innate/genetics
4.
ACS Omega ; 7(35): 30700-30709, 2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36068861

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is evolving with mutations in the spike protein, especially in the receptor-binding domain (RBD). The failure of public health measures in some countries to contain the spread of the disease has given rise to novel viral variants with increased transmissibility. However, key questions about how quickly the variants can spread remain unclear. Herein, we performed a structural investigation using molecular dynamics simulations and determined dissociation constant (K D) values using surface plasmon resonance assays of three fast-spreading SARS-CoV-2 variants, alpha, beta, and gamma, as well as genetic factors in host cells that may be related to the viral infection. Our results suggest that the SARS-CoV-2 variants facilitate their entry into the host cell by moderately increased binding affinities to the human ACE2 receptor, different torsions in hACE2 mediated by RBD variants, and an increased spike exposure time to proteolytic enzymes. We also found that other host cell aspects, such as gene and isoform expression of key genes for the infection (ACE2, FURIN, and TMPRSS2), may have few contributions to the SARS-CoV-2 variant infectivity. In summary, we concluded that a combination of viral and host cell factors allows SARS-CoV-2 variants to increase their abilities to spread faster than the wild type.

SELECTION OF CITATIONS
SEARCH DETAIL
...