Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Virulence ; 13(1): 936-948, 2022 12.
Article in English | MEDLINE | ID: mdl-35582758

ABSTRACT

White spot syndrome virus (WSSV) is a large, enveloped, double-stranded DNA virus that threatens shrimp aquaculture worldwide. So far, the mechanisms of WSSV-host interactions are ill-defined. Recent studies have revealed that IE1, an immediate-early protein of WSSV, is a multifunctional modulator implicated in virus-host interactions. In this study, the functions of IE1 were further explored by identifying its interacting proteins using GST-pull down and mass spectrometry analysis. A total of 361 host proteins that potentially bind to IE1 were identified. Bioinformatics analysis revealed that the identified IE1-interactors wereinvolved in various signaling pathways such as prophenoloxidase (proPO) system, PI3K-AKT, and MAPK. Among these, the regulatory role of IE1 in shrimp proPO system was further studied. The Co-immunoprecipitation results confirmed that IE1 interacted with the Ig-like domain of Penaeus vannamei proPO or proPO-like protein (hemocyanin). Additionally, we found that knockdown of IE1 reduced viral genes expression and viral loads and increased the hemocytes' PO activity, whereas recombinant IE1 protein inhibited the PO activity in a dose-dependent manner. Finally, we demonstrated that WSSV could suppress the hemocytes' PO activity at the early infection stage. Collectively, our current data indicate that IE1 is a novel viral regulator that negatively modulates the shrimp proPO system.


Subject(s)
Immediate-Early Proteins , White spot syndrome virus 1 , Animals , Catechol Oxidase , Enzyme Precursors , Immediate-Early Proteins/genetics , Immediate-Early Proteins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proteomics , White spot syndrome virus 1/genetics , White spot syndrome virus 1/metabolism
2.
Int J Syst Evol Microbiol ; 71(10)2021 Oct.
Article in English | MEDLINE | ID: mdl-34623951

ABSTRACT

A Gram-stain-negative, non-motile, rod-shaped, aerobic bacterium (designated as LMIT005T) was isolated from shrimp ponds in Shantou, China. The new isolate was characterized taxonomically using a polyphasic approach. Based on 16S rRNA gene sequence analysis, strain LMIT005T was found to be affiliated with the family Cyclobacteriaceae of the order Cytophagales while appearing as a distinct lineage. The 16S rRNA gene sequence similarity between strain LMIT005T and Algoriphagus yeomjeoni KCTC 12309T, the closest type strain in the family, was 91.3 %. Strain LMIT005T grew optimally at 25 °C, pH 7 and in the presence of 2.0 % (w/v) NaCl. The DNA G+C content (data from genome sequence) was 40.5 mol%. Compared with reference strain A. yeomjeoni KCTC 12309T, the average nucleotide identity (ANI) of LMIT005T was 70 %. The sole respiratory quinone of LMIT005T was menaquinone (MK-7), and the major fatty acids were summed feature 3 (C16 : 1 ω6c / C16 : 1 ω7c). The polar lipids of strain LMIT005T were mainly composed of phosphatidylethanolamine, phosphatidylcholine, two unidentified amino lipids, two unidentified lipids, one unidentified glycolipid and one unidentified phospholipid. The draft genome of strain LMIT005T comprised 3 089 781 bp (3.09 Mb) nucleotides and 2773 genes. Antimicrobial resistant-related genes (blal, mexA, and mexb) were annotated in the genome of strain LMIT005T, which indicated that it might be able to resist ß-lactam antibiotics. This was further verified by antimicrobial resistant test. Given its distinct genomic, morphological, and physiological differences from previously described type strains, strain LMIT005T is proposed as a representative of a novel genus of the family Cyclobacteriaceae, with the name Penaeicola halotolerans gen. nov., sp. nov. The type strain is LMIT005T (=KCTC 82616T=CICC 25047T).


Subject(s)
Bacteroidetes/classification , Phylogeny , Seawater , Aquaculture , Bacterial Typing Techniques , Bacteroidetes/isolation & purification , Base Composition , China , DNA, Bacterial/genetics , Fatty Acids/chemistry , Phospholipids/chemistry , Ponds , RNA, Ribosomal, 16S/genetics , Seawater/microbiology , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
3.
Fish Shellfish Immunol ; 89: 187-197, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30936050

ABSTRACT

Replacement of fish oil (FO) with vegetable oils (VO) in diets is economically desirable for the sustainable development of the aquaculture industry. However, inflammation provoked by FO replacement limited its widely application in fish industry. In order to understand the mechanism of VO-induced inflammation, this study investigated the impact of different dietary vegetable oils on the intestinal health and microbiome in carnivorous marine fish golden pompano (Trachinotus ovatus). Three diets supplemented with fish oil (FO, rich in long-chain polyunsaturated fatty acids), soybean oil (SO, rich in 18:2n-6) and linseed oil (LO, rich in 18:3n-3), respectively, were fed on juvenile golden pompano for 8 weeks, and the intestinal histology, digestive enzymes activities, immunity and antioxidant indices as well as intestinal microbiome were determined. The results showed that dietary SO significantly impaired intestinal health, and decreased the number and height of intestinal folds, and muscle thickness, as well as the zonula occludens-1 (zo-1) mRNA expression in intestine. Moreover, the two dietary VO significantly decreased the amylase and lipase activities in intestine, and reduced the trypsin activity in the dietary SO group. Furthermore, the two VO diets increased intestinal acid phosphatase (ACP) activity, while intestinal lysozyme (LZM) activity and serum diamine oxidase (DAO) activity in the SO group were also significantly increased (P < 0.05). Analysis of the intestinal microbiota showed that the two VO diets significantly increased the abundance of intestinal potentially pathogenic bacteria (Mycoplasma and Vibrio) and decreased proportions of intestinal probiotics (Bacillus and Lactococcus), especially in the dietary SO group. These results indicate that complete replacement of FO with VO in diets would induce intestinal inflammation and impair intestinal function, which might be due to changes in intestinal microbiota profiles, and that dietary SO would have a more negative effect compared to dietary LO on intestinal health in T. ovatus.


Subject(s)
Fish Oils/metabolism , Gastrointestinal Microbiome/drug effects , Immunity, Innate/drug effects , Linseed Oil/metabolism , Perciformes/immunology , Soybean Oil/metabolism , Animal Feed/analysis , Animals , Antioxidants/metabolism , Diet/veterinary , Dietary Supplements/analysis , Fish Oils/administration & dosage , Intestines/anatomy & histology , Intestines/drug effects , Intestines/enzymology , Linseed Oil/administration & dosage , Perciformes/microbiology , Random Allocation , Soybean Oil/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...