Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
Article in English | MEDLINE | ID: mdl-38959415

ABSTRACT

The human lung is a complex organ comprised of diverse populations of epithelial, mesenchymal, vascular and immune cells, which gains even greater complexity during disease states. To effectively study the lung at a single cell level, a dissociation protocol that achieves the highest yield of viable cells of interest with minimal dissociation-associated protein or transcription changes key. Here, we detail a rapid collagenase-based dissociation protocol (Col-Short), which provides a high-yield single cell suspension suitable for a variety of downstream applications. Diseased human lung explants were obtained and dissociated through the Col-Short protocol and compared to four other dissociation protocols. Resulting single cell suspensions were then assessed with flow cytometry, differential staining, and quantitative real-time PCR to identify major hematopoietic and non-hematopoietic cell populations, as well as their activation states. We observed that the Col-Short protocol provides the greatest number of cells per gram of lung tissue with no reduction in viability when compared to previously described dissociation protocols. Col-Short had no observable surface protein marker cleavage as well as lower expression of protein activation markers and stress-related transcripts compared to four other protocols. The Col-Short dissociation protocol can be used as a rapid strategy to generate single cells for respiratory cell biology research.

2.
Article in English | MEDLINE | ID: mdl-38852935

ABSTRACT

BACKGROUND: T cells drive acute cellular rejection (ACR) and its progression to chronic lung allograft dysfunction (CLAD) following lung transplantation. International Society for Heart and Lung Transplantation grade A1 ACR without associated allograft dysfunction is often untreated, yet some patients develop progressive graft dysfunction. T-cell composition of A1 ACR lesions may have prognostic value; therefore, protein-level and epigenetic techniques were applied to transbronchial biopsy tissue to determine whether differential T-cell infiltration in recipients experiencing a first episode of stable grade A1 ACR (StA1R) is associated with early CLAD. METHODS: Sixty-two patients experiencing a first episode of StA1R were divided into those experiencing CLAD within 2 years (n = 13) and those remaining CLAD-free for 5 or more years (n = 49). Imaging mass cytometry (IMC) was used to profile the spectrum and distribution of intragraft T cell phenotypes on a subcohort (n = 16; 8 early-CLAD and 8 no early-CLAD). Immunofluorescence was used to quantify CD4+, CD8+, and FOXP3+ cells. Separately, CD3+ cells were fluorescently labeled, micro-dissected, and the degree of Treg-specific demethylated region methylation was determined. RESULTS: PhenoGraph unsupervised clustering on IMC revealed 50 unique immune cell subpopulations. Methylation and immunofluorescence analyses demonstrated no significant differences in Tregs between early-CLAD and no early-CLAD groups. Immunofluorescence revealed that patients who developed CLAD within 2 years of lung transplantation showed greater CD8+ T cell infiltration compared to those who remained CLAD-free for 5 or more years. CONCLUSIONS: In asymptomatic patients with a first episode of A1 rejection, greater CD8+ T cell content may be indicative of worse long-term outlook.

3.
Cells ; 13(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38786082

ABSTRACT

Lung transplantation results are compromised by ischemia-reperfusion injury and alloimmune responses. Ex vivo lung perfusion (EVLP) is used to assess marginal donor lungs before transplantation but is also an excellent platform to apply novel therapeutics. We investigated donor lung immunomodulation using genetically engineered mesenchymal stromal cells with augmented production of human anti-inflammatory hIL-10 (MSCsIL-10). Pig lungs were placed on EVLP for 6 h and randomized to control (n = 7), intravascular delivery of 20 × 106 (n = 5, low dose) or 40 × 106 human MSCs IL-10 (n = 6, high dose). Subsequently, single-lung transplantation was performed, and recipient pigs were monitored for 3 days. hIL-10 secretion was measured during EVLP and after transplantation, and immunological effects were assessed by cytokine profile, T and myeloid cell characterization and mixed lymphocyte reaction. MSCIL-10 therapy rapidly increased hIL-10 during EVLP and resulted in transient hIL-10 elevation after lung transplantation. MSCIL-10 delivery did not affect lung function but was associated with dose-related immunomodulatory effects, with the low dose resulting in a beneficial decrease in apoptosis and lower macrophage activation, but the high MSCIL-10 dose resulting in inflammation and cytotoxic CD8+ T cell activation. MSCIL-10 therapy during EVLP results in a rapid and transient perioperative hIL-10 increase and has a therapeutic window for its immunomodulatory effects.


Subject(s)
Immunomodulation , Interleukin-10 , Lung Transplantation , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Lung Transplantation/methods , Animals , Interleukin-10/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/cytology , Swine , Mesenchymal Stem Cell Transplantation/methods , Humans , Genetic Engineering , Lung/metabolism , Lung/pathology , Lung/immunology
4.
Hum Gene Ther ; 35(11-12): 374-387, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38717950

ABSTRACT

The ongoing advancements in CRISPR-Cas technologies can significantly accelerate the preclinical development of both in vivo and ex vivo organ genome-editing therapeutics. One of the promising applications is to genetically modify donor organs prior to implantation. The implantation of optimized donor organs with long-lasting immunomodulatory capacity holds promise for reducing the need for lifelong potent whole-body immunosuppression in recipients. However, assessing genome-targeting interventions in a clinically relevant manner prior to clinical trials remains a major challenge owing to the limited modalities available. This study introduces a novel platform for testing genome editing in human lungs ex vivo, effectively simulating preimplantation genetic engineering of donor organs. We identified gene regulatory elements whose disruption via Cas nucleases led to the upregulation of the immunomodulatory gene interleukin 10 (IL-10). We combined this approach with adenoviral vector-mediated IL-10 delivery to create favorable kinetics for early (immediate postimplantation) graft immunomodulation. Using ex vivo organ machine perfusion and precision-cut tissue slice technology, we demonstrated the feasibility of evaluating CRISPR genome editing in human lungs. To overcome the assessment limitations in ex vivo perfused human organs, we conducted an in vivo rodent study and demonstrated both early gene induction and sustained editing of the lung. Collectively, our findings lay the groundwork for a first-in-human-organ study to overcome the current translational barriers of genome-targeting therapeutics.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Lung , Gene Editing/methods , Humans , Lung/metabolism , Interleukin-10/genetics , Interleukin-10/metabolism , Animals , Genetic Vectors/genetics , Genetic Vectors/administration & dosage
5.
Article in English | MEDLINE | ID: mdl-38663465

ABSTRACT

BACKGROUND: Long-term survival after lung transplantation (LTx) remains limited by chronic lung allograft dysfunction (CLAD), which includes 2 main phenotypes: bronchiolitis obliterans syndrome (BOS) and restrictive allograft syndrome (RAS), with possible overlap. We aimed to detail and quantify pathological features of these CLAD sub-types. METHODS: Peripheral and central paraffin-embedded explanted lung samples were obtained from 20 consecutive patients undergoing a second LTx for CLAD, from 3 lobes. Thirteen lung samples, collected from non-transplant lobectomies or donor lungs, were used as controls. Blinded semi-quantitative grading was performed to assess airway fibrotic changes, parenchymal and pleural fibrosis, and epithelial and vascular abnormalities. RESULTS: CLAD lung samples had higher scores for all airway- and lung-related parameters compared to controls. There was a notable overlap in histologic scores between BOS and RAS, with a wide range of scores in both conditions. Parenchymal and vascular fibrosis scores were significantly higher in RAS compared to BOS (p = 0.003 for both). We observed a significant positive correlation between the degree of inflammation around each airway, the severity of epithelial changes, and airway fibrosis. Immunofluorescence staining demonstrated a trend toward a lower frequency of club cells in CLAD and a higher frequency of apoptotic club cells in BOS samples (p = 0.01). CONCLUSIONS: CLAD is a spectrum of airway, parenchymal, and pleural fibrosis, as well as epithelial, vascular, and inflammatory pathologic changes, where BOS and RAS overlap significantly. Our semi-quantitative grading score showed a generally high inter-reader reliability and may be useful for future CLAD histologic assessments.

6.
Front Genet ; 14: 1281538, 2023.
Article in English | MEDLINE | ID: mdl-38075698

ABSTRACT

Awareness of RNA-based therapies has increased after the widespread adoption of mRNA vaccines against SARS-CoV-2 during the COVID-19 pandemic. These mRNA vaccines had a significant impact on reducing lung disease and mortality. They highlighted the potential for rapid development of RNA-based therapies and advances in nanoparticle delivery systems. Along with the rapid advancement in RNA biology, including the description of noncoding RNAs as major products of the genome, this success presents an opportunity to highlight the potential of RNA as a therapeutic modality. Here, we review the expanding compendium of RNA-based therapies, their mechanisms of action and examples of application in the lung. The airways provide a convenient conduit for drug delivery to the lungs with decreased systemic exposure. This review will also describe other delivery methods, including local delivery to the pleura and delivery vehicles that can target the lung after systemic administration, each providing access options that are advantageous for a specific application. We present clinical trials of RNA-based therapy in lung disease and potential areas for future directions. This review aims to provide an overview that will bring together researchers and clinicians to advance this burgeoning field.

7.
Front Immunol ; 14: 1291649, 2023.
Article in English | MEDLINE | ID: mdl-38077395

ABSTRACT

Replacement of diseased organs with transplanted healthy donor ones remains the best and often only treatment option for end-stage organ disease. Immunosuppressants have decreased the incidence of acute rejection, but long-term survival remains limited. The broad action of current immunosuppressive drugs results in global immune impairment, increasing the risk of cancer and infections. Hence, achievement of allograft tolerance, in which graft function is maintained in the absence of global immunosuppression, has long been the aim of transplant clinicians and scientists. Regulatory T cells (Treg) are a specialized subset of immune cells that control a diverse array of immune responses, can prevent allograft rejection in animals, and have recently been explored in early phase clinical trials as an adoptive cellular therapy in transplant recipients. It has been established that allograft residency by Tregs can promote graft acceptance, but whether intragraft Treg functional diversification and spatial organization contribute to this process is largely unknown. In this review, we will explore what is known regarding the properties of intragraft Tregs during allograft acceptance and rejection. We will summarize recent advances in understanding Treg tissue residency through spatial, transcriptomic and high-dimensional cytometric methods in both animal and human studies. Our discussion will explore properties of intragraft Tregs in mediating operational tolerance to commonly transplanted solid organs. Finally, given recent developments in Treg cellular therapy, we will review emerging knowledge of whether and how these adoptively transferred cells enter allografts in humans. An understanding of the properties of intragraft Tregs will help lay the foundation for future therapies that will promote immune tolerance.


Subject(s)
Graft Rejection , T-Lymphocytes, Regulatory , Animals , Humans , Graft Rejection/prevention & control , Transplantation, Homologous , Transplantation Tolerance , Immunosuppressive Agents/therapeutic use , Allografts
8.
Physiother Can ; 75(4): 350-356, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38037575

ABSTRACT

Purpose: To describe the functional trajectory and physical rehabilitation of an individual who underwent lung transplantation for COVID-19 acute respiratory distress syndrome (ARDS). Client Description: A previously healthy 60-year-old man admitted to critical care pre-transplantation and followed six months post-transplant. Intervention: Physical rehabilitation in the critical care, acute ward and in-patient rehabilitation settings. Measures and Outcome: Despite a successful surgery, a long and complex acute care admission contributed to a slow and variable functional recovery. Significant functional limitations and physical frailty were present in the early post-transplant period. Implications: Little is known of the effects of COVID-19 superimposed upon lung transplantation on muscle function, exercise capacity, and physical activity. Future research should include case series to further understand the functional deficits and trajectory of recovery in this emerging clinical population. Standard core outcome measures should be identified for this population to enable synthesis of findings and inform short- and long-term rehabilitation strategies.


Objectif: décrire la trajectoire fonctionnelle et la réadaptation physique d'une personne qui a subi une transplantation pulmonaire à cause d'un syndrome de détresse respiratoire aiguë consécutif à la COVID-19. Description du client: un homme de 60 ans auparavant en santé a été admis en soins intensifs avant la transplantation et a été suivi pendant six mois par la suite. Intervention: réadaptation physique en soins intensifs, à l'aile de soins aigus et en milieu de réadaptation pour patients hospitalisés. Mesures et résultats cliniques: malgré une opération réussie, une hospitalisation longue et complexe en soins aigus a contribué à un rétablissement fonctionnel lent et variable. D'importantes limites fonctionnelles et une fragilité physique ont été observées au début de la période suivant la transplantation. Implications: On sait peu de choses sur les effets de la COVID-19 qui s'ajoutent à la transplantation pulmonaire sur le fonctionnement musculaire, la capacité à l'exercice et l'activité physique. Les futures recherches devraient inclure des séries de cas pour mieux comprendre les déficits fonctionnels et la trajectoire de la convalescence auprès de cette population clinique en émergence. Il faudrait établir des mesures de résultats de référence standards dans cette population afin de synthétiser les observations et d'éclairer les stratégies de réadaptation à court et à long terme.

9.
JCI Insight ; 8(21)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37937643

ABSTRACT

Chronic lung allograft dysfunction (CLAD) is a major complication after lung transplantation that results from a complex interplay of innate inflammatory and alloimmune factors, culminating in parenchymal and/or obliterative airway fibrosis. Excessive IL-17A signaling and chronic inflammation have been recognized as key factors in these pathological processes. Herein, we developed a model of repeated airway inflammation in mouse minor alloantigen-mismatched single-lung transplantation. Repeated intratracheal LPS instillations augmented pulmonary IL-17A expression. LPS also increased acute rejection, airway epithelial damage, and obliterative airway fibrosis, similar to human explanted lung allografts with antecedent episodes of airway infection. We then investigated the role of donor and recipient IL-17 receptor A (IL-17RA) in this context. Donor IL-17RA deficiency significantly attenuated acute rejection and CLAD features, whereas recipient IL-17RA deficiency only slightly reduced airway obliteration in LPS allografts. IL-17RA immunofluorescence positive staining was greater in human CLAD lungs compared with control human lung specimens, with localization to fibroblasts and myofibroblasts, which was also seen in mouse LPS allografts. Taken together, repeated airway inflammation after lung transplantation caused local airway epithelial damage, with persistent elevation of IL-17A and IL-17RA expression and particular involvement of IL-17RA on donor structural cells in development of fibrosis.


Subject(s)
Pulmonary Fibrosis , Respiratory Tract Infections , Mice , Humans , Animals , Interleukin-17/metabolism , Receptors, Interleukin-17/metabolism , Lipopolysaccharides/toxicity , Lipopolysaccharides/metabolism , Pulmonary Fibrosis/pathology , Lung/pathology , Inflammation/metabolism , Fibrosis , Respiratory Tract Infections/metabolism , Allografts
10.
J Vis Exp ; (201)2023 Nov 10.
Article in English | MEDLINE | ID: mdl-38009732

ABSTRACT

Murine intrapulmonary tracheal transplantation (IPTT) is used as a model of obliterative airway disease (OAD) following lung transplantation. Initially reported by our team, this model has gained use in the study of OAD due to its high technical reproducibility and suitability for investigating immunological behaviors and therapeutic interventions. In the IPTT model, a rodent tracheal graft is directly inserted into the recipient's lung through the pleura. This model is distinct from the heterotopic tracheal transplantation (HTT) model, wherein grafts are transplanted into subcutaneous or omental sites, and from the orthotopic tracheal transplantation (OTT) model in which the donor trachea replaces the recipient's trachea. Successful implementation of the IPTT model requires advanced anesthetic and surgical skills. Anesthetic skills include endotracheal intubation of the recipient, setting appropriate ventilatory parameters, and appropriately timed extubation after recovery from anesthesia. Surgical skills are essential for precise graft placement within the lung and for ensuring effective sealing of the visceral pleura to prevent air leakage and bleeding. In general, the learning process takes approximately 2 months. In contrast to the HTT and OTT models, in the IPTT model, the allograft airway develops airway obliteration in the relevant lung microenvironment. This allows investigators to study lung-specific immunological and angiogenic processes involved in airway obliteration after lung transplantation. Furthermore, this model is also unique in that it exhibits tertiary lymphoid organs (TLOs), which are also seen in human lung allografts. TLOs are comprised of T and B cell populations and characterized by the presence of high endothelial venules that direct immune cell recruitment; therefore, they are likely to play a crucial role in graft acceptance and rejection. We conclude that the IPTT model is a useful tool for studying intrapulmonary immune and profibrotic pathways involved in the development of airway obliteration in the lung transplant allograft.


Subject(s)
Anesthetics , Bronchiolitis Obliterans , Lung Transplantation , Humans , Mice , Animals , Bronchiolitis Obliterans/etiology , Bronchiolitis Obliterans/surgery , Trachea/transplantation , Reproducibility of Results , Lung Transplantation/adverse effects , Mice, Inbred C57BL , Mice, Inbred BALB C , Disease Models, Animal
11.
Am J Transplant ; 23(12): 1922-1938, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37295720

ABSTRACT

In lung transplantation, antibody-mediated rejection (AMR) diagnosed using the International Society for Heart and Lung Transplantation criteria is uncommon compared with other organs, and previous studies failed to find molecular AMR (ABMR) in lung biopsies. However, understanding of ABMR has changed with the recognition that ABMR in kidney transplants is often donor-specific antibody (DSA)-negative and associated with natural killer (NK) cell transcripts. We therefore searched for a similar molecular ABMR-like state in transbronchial biopsies using gene expression microarray results from the INTERLUNG study (#NCT02812290). After optimizing rejection-selective transcript sets in a training set (N = 488), the resulting algorithms separated an NK cell-enriched molecular rejection-like state (NKRL) from T cell-mediated rejection (TCMR)/Mixed in a test set (N = 488). Applying this approach to all 896 transbronchial biopsies distinguished 3 groups: no rejection, TCMR/Mixed, and NKRL. Like TCMR/Mixed, NKRL had increased expression of all-rejection transcripts, but NKRL had increased expression of NK cell transcripts, whereas TCMR/Mixed had increased effector T cell and activated macrophage transcripts. NKRL was usually DSA-negative and not recognized as AMR clinically. TCMR/Mixed was associated with chronic lung allograft dysfunction, reduced one-second forced expiratory volume at the time of biopsy, and short-term graft failure, but NKRL was not. Thus, some lung transplants manifest a molecular state similar to DSA-negative ABMR in kidney and heart transplants, but its clinical significance must be established.


Subject(s)
Kidney Transplantation , Lung Transplantation , Killer Cells, Natural , Kidney Transplantation/adverse effects , Kidney/pathology , Biopsy , Lung Transplantation/adverse effects , Antibodies , Graft Rejection/diagnosis , Graft Rejection/etiology
12.
Lab Invest ; 103(9): 100198, 2023 09.
Article in English | MEDLINE | ID: mdl-37321542

ABSTRACT

Formalin, a common laboratory fixative, is a type 1 carcinogen; a biohazard with risks, environmental, disposal, and legal costs; and a chemical modifier of protein epitopes in tissues. A less-toxic tissue preservation method is therefore badly needed. We have developed a novel tissue preservation medium, Amber, composed of low-potassium dextran glucose, 10% honey, and 1% coconut oil. This study investigates Amber as compared with formalin with respect to the following aspects: (1) histologic preservation, (2) epitope integrity with immunohistochemistry (IHC) and immunofluorescence (IF), and (3) integrity of tissue RNA. Rat and human lung, liver, kidney, and heart tissues were collected and stored for 24 hours at 4 °C in Amber or formalin. The tissues were evaluated with hematoxylin and eosin; IHC: thyroid transcription factor, muscle-specific actin, hepatocyte-specific antigen, and common acute lymphoblastic leukemia antigen; and IF: VE-cadherin, vimentin, and muscle-specific actin. RNA quality upon extraction was also assessed. Amber demonstrated superior and/or noninferior performance in rat and human tissue evaluation with respect to standard techniques of histology, IHC, IF, and extracted RNA quality. Amber maintains high-quality morphology without compromising the ability to perform IHC and nucleic acid extraction. As such, Amber could be a safer and superior substitute to formalin for clinical tissue preservation for contemporary pathological examination.


Subject(s)
Actins , Formaldehyde , Rats , Humans , Animals , Amber , Fixatives , Tissue Preservation/methods , RNA , Antigens , Tissue Fixation/methods
13.
J Heart Lung Transplant ; 42(10): 1363-1377, 2023 10.
Article in English | MEDLINE | ID: mdl-37315746

ABSTRACT

BACKGROUND: Inflammatory injury in the donor lung remains a persistent challenge in lung transplantation that limits donor organ usage and post-transplant outcomes. Inducing immunomodulatory capacity in donor organs could address this unsolved clinical problem. We sought to apply clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) technologies to the donor lung to fine-tune immunomodulatory gene expression, exploring for the first time the therapeutic use of CRISPR-mediated transcriptional activation in the whole donor lung. METHODS: We explored the feasibility of CRISPR-mediated transcriptional upregulation of interleukin 10 (IL-10), a key immunomodulatory cytokine, in vitro and in vivo. We first evaluated the potency, titratability, and multiplexibility of the gene activation in rat and human cell lines. Next, in vivo CRISPR-mediated IL-10 activation was characterized in rat lungs. Finally, the IL-10-activated donor lungs were transplanted into recipient rats to assess the feasibility in a transplant setting. RESULTS: The targeted transcriptional activation induced robust and titrable IL-10 upregulation in vitro. The combination of guide RNAs also facilitated multiplex gene modulation, that is, simultaneous activation of IL-10 and IL1 receptor antagonist. In vivo profiling demonstrated that adenoviral delivery of Cas9-based activators to the lung was feasible with the use of immunosuppression, which is routinely applied to organ transplant recipients. The transcriptionally modulated donor lungs retained IL-10 upregulation in isogeneic and allogeneic recipients. CONCLUSIONS: Our findings highlight the potential of CRISPR epigenome editing to improve lung transplant outcomes by creating a more favorable immunomodulatory environment in the donor organ, a paradigm that may be extendable to other organ transplants.


Subject(s)
Gene Editing , Interleukin-10 , Humans , Animals , Rats , Interleukin-10/genetics , Cell Line , Lung , Immunomodulation
15.
Clin Exp Immunol ; 213(1): 138-154, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37004176

ABSTRACT

The ability to induce tolerance would be a major advance in the field of solid organ transplantation. Here, we investigated whether autologous (congenic) hematopoietic stem cell transplantation (HSCT) could promote tolerance to heart allografts in mice. In an acute rejection model, fully MHC-mismatched BALB/c hearts were heterotopically transplanted into C57BL/6 (CD45.2) mice. One week later, recipient mice were lethally irradiated and reconstituted with congenic B6 CD45.1 Lin-Sca1+ckit+ cells. Recipient mice received a 14-day course of rapamycin both to prevent rejection and to expand regulatory T cells (Tregs). Heart allografts in both untreated and rapamycin-treated recipients that did not undergo HSCT were rejected within 33 days (median survival time = 8 days for untreated recipients, median survival time = 32 days for rapamycin-treated recipients), whereas allografts in HSCT-treated recipients had a median survival time of 55 days (P < 0.001 vs. both untreated and rapamycin-treated recipients). Enhanced allograft survival following HSCT was associated with increased intragraft Foxp3+ Tregs, reduced intragraft B cells, and reduced serum donor-specific antibodies. In a chronic rejection model, Bm12 hearts were transplanted into C57BL/6 (CD45.2) mice, and congenic HSCT was performed two weeks following heart transplantation. HSCT led to enhanced survival of allografts (median survival time = 70 days vs. median survival time = 28 days in untreated recipients, P < 0.01). Increased allograft survival post-HSCT was associated with prevention of autoantibody development and absence of vasculopathy. These data support the concept that autologous HSCT can promote immune tolerance in the setting of allotransplantation. Further studies to optimize HSCT protocols should be performed before this procedure is adopted clinically.


Subject(s)
Heart Transplantation , Hematopoietic Stem Cell Transplantation , Mice , Animals , Disease Models, Animal , Graft Survival , Mice, Inbred C57BL , Sirolimus/pharmacology , Allografts , Graft Rejection/prevention & control , Mice, Inbred BALB C
17.
Plast Reconstr Surg Glob Open ; 11(3): e4831, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36875922

ABSTRACT

Acute rejection in vascularized composite allotransplantation has been identified using the Banff 2007 working classification. We propose an addition to this classification based on histological and immunological assessment within the skin and subcutaneous tissue. Methods: Biopsies from vascularized composite transplant patients were obtained at scheduled visits and whenever skin changes occurred. Histology and immunohistochemistry were performed on all samples, looking at infiltrating cells. Results: Observations were made specifically related to each component of the skin, including the epidermis, dermis, vessels, and subcutaneous tissue. Our findings led to the establishment of the University Health Network addition of skin rejection. Conclusions: The high rate of rejection where the skin is involved requires novel techniques for early detection. The University Health Network skin rejection addition can serve as an adjunct to the Banff classification.

18.
Mucosal Immunol ; 16(2): 104-120, 2023 04.
Article in English | MEDLINE | ID: mdl-36842540

ABSTRACT

Chronic lung allograft dysfunction (CLAD) limits survival after lung transplantation. Noxious stimuli entering the airways foster CLAD development. Classical dendritic cells (cDCs) link innate and adaptive immunity and exhibit regional and functional specialization in the lung. The transcription factor basic leucine zipper ATF-like 3 (BATF3) is absolutely required for the development of type 1 cDCs (cDC1s), which reside in the airway epithelium and have variable responses depending on the context. We studied the role of BATF3 in a mouse minor alloantigen-mismatched orthotopic lung transplant model of CLAD with and without airway inflammation triggered by repeated administration of intratracheal lipopolysaccharide (LPS). We found that cDC1s accumulated in allografts compared with isografts and that donor cDC1s were gradually replaced by recipient cDC1s. LPS administration increased the number of cDC1s and enhanced their state of activation. We found that Batf3-/- recipient mice experienced reduced acute rejection in response to LPS; in contrast, Batf3-/- donor grafts underwent enhanced lung and skin allograft rejection and drove augmented recipient cluster of differentiation 8+ T-cell expansion in the absence of LPS. Our findings suggest that donor and recipient cDC1s have differing and context-dependent roles and may represent a therapeutic target in lung transplantation.


Subject(s)
Lung Transplantation , Pulmonary Fibrosis , Animals , Mice , Allografts , Fibrosis , Graft Rejection/drug therapy , Lipopolysaccharides , Lung/pathology , Mice, Inbred C57BL , Pulmonary Fibrosis/pathology , Transplantation, Homologous
19.
Am J Transplant ; 23(3): 393-400, 2023 03.
Article in English | MEDLINE | ID: mdl-36695689

ABSTRACT

The long-term benefits of lung transplantation (LTx) are limited by pathogenic alloimmune responses that drive injury, inflammation, and chronic dysfunction. Human leukocyte antigen-G (HLA-G) plays a key role in the modulation of these pathways. This study assesses the impact of the HLA-G genotype on immunologic risk and survival following LTx. This retrospective cohort study included 289 bilateral LTx. Recipient and donor HLA-G genotypes were analyzed to identify associations with de novo donor-specific antibodies, acute rejection, chronic lung allograft dysfunction, and allograft survival. We further assessed these associations, both individually and in paired analysis, based on a grouped haplotype classification of HLA-G expression. Donor HLA-G single nucleotide polymorphisms were associated with allograft injury, the onset of chronic lung allograft dysfunction following injury, and allograft survival. Recipient HLA-G single nucleotide polymorphisms were associated with allograft injury, cellular rejection, and donor-specific antibody formation. "Low HLA-G expression" donor haplotypes were associated with impaired allograft survival, as were "low HLA-G expression" donor-recipient haplotype pairs. This study provides compelling evidence for the role of HLA-G in modulating immunologic risk after LTx. Our results highlight the importance of both donor and recipient HLA-G genotypes on the overall risk profile and underscore the lasting influence of donor genotype on lung transplant outcomes.


Subject(s)
HLA-G Antigens , Lung Transplantation , Humans , Retrospective Studies , Graft Rejection , Tissue Donors , Lung Transplantation/adverse effects , HLA Antigens , Graft Survival
20.
Front Transplant ; 2: 1161146, 2023.
Article in English | MEDLINE | ID: mdl-38993922

ABSTRACT

Background: Single-cell RNA-sequencing (scRNA-seq) technology has revealed novel cell populations in organs, uncovered regulatory relationships between genes, and allowed for tracking of cell lineage trajectory during development. It demonstrates promise as a method to better understand transplant biology; however, fundamental bioinformatic tools for its use in the context of transplantation have not been developed. One major need has been a robust method to identify cells as being either donor or recipient genotype origin, and ideally without the need to separately sequence the donor and recipient. Methods: We implemented a novel two-stage genotype discovery method (scTx) optimized for transplant samples by being robust to disparities in cell number and cell type. Using both in silico and real-world scRNA-seq transplant data, we benchmarked our method against existing demultiplexing methods to profile their limitations in terms of sequencing depth, donor and recipient cell imbalance, and single nucleotide variant input selection. Results: Using in silico data, scTx could more accurately separate donor from recipient cells and at much lower genotype ratios than existing methods. This was further validated using solid-organ scRNA-seq data where scTx could more reliably identify when a second genotype was present and at lower numbers of cells from a second genotype. Conclusion: scTx introduces the capability to accurately segregate donor and recipient gene expression at the single-cell level from scRNA-seq data without the need to separately genotype the donor and recipient. This will facilitate the use of scRNA-seq in the context of transplantation.

SELECTION OF CITATIONS
SEARCH DETAIL
...