Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(8): eade7968, 2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36827364

ABSTRACT

Nonlinear holography shapes the amplitude and phase of generated new harmonics using nonlinear processes. Classical nonlinear holography influenced many fields in optics, from information storage, demultiplexing of spatial information, and all-optical control of accelerating beams. Here, we extend the concept of nonlinear holography to the quantum regime. We directly shape the spatial quantum correlations of entangled photon pairs in two-dimensional patterned nonlinear photonic crystals using spontaneous parametric down conversion, without any pump shaping. The generated signal-idler pair obeys a parity conservation law that is governed by the nonlinear crystal. Furthermore, the quantum states exhibit quantum correlations and violate the Clauser-Horne-Shimony-Holt inequality, thus enabling entanglement-based quantum key distribution. Our demonstration paves the way for controllable on-chip quantum optics schemes using the high-dimensional spatial degree of freedom.

2.
Opt Express ; 30(12): 21535-21543, 2022 Jun 06.
Article in English | MEDLINE | ID: mdl-36224871

ABSTRACT

Optical N00N states are N-photon path entangled states with important applications in quantum metrology. However, their use was limited till now owing to the difficulties of generating them in an efficient and robust manner. Here we propose and experimentally demonstrate two new simple, compact and robust schemes to generate path entangled N00N states with N = 2 that emerge directly from the nonlinear interaction. The first scheme is based on shaping the pump beam, and the second scheme is based on modulating the nonlinear coefficient of the crystal. These new methods exhibit high coincidence count rates for the detection of a N00N state, reaching record value of 2 × 105 coincidences per second. We observe super-resolution by measuring the second order correlation on the generated N = 2 state in an interferometric setup, showing the distinct fringe periodicity at half of the optical wavelength. Our findings may pave the way towards scalable and efficient sources for super-resolved quantum metrology applications and for the generation of bright squeezed vacuum states.

3.
Phys Rev Lett ; 112(5): 053901, 2014 Feb 07.
Article in English | MEDLINE | ID: mdl-24580591

ABSTRACT

The effect of edge topological dislocations on the phase matching spectrum of quadratic nonlinear photonic crystals was studied theoretically and experimentally. We have found that the parity of the dislocation's topological charge governs the transfer of energy between an input wave and its second harmonic. A dislocation with an odd topological charge nulls the efficiency of the otherwise optimal phase matched wavelength, whereas high conversion is now achieved at new wavelengths that exhibited low efficiency without the dislocation. However, when the topological charge is an even number, the dislocation has a negligible effect on the efficiency curve. This effect is observed in periodically poled crystals having a single peak in the phase matching spectrum, as well as in phase-reversed and quasiperiodic nonlinear photonic crystals that are characterized by multiple efficiency peaks, where a dimple is imprinted on each spectral peak.

4.
Opt Lett ; 38(24): 5470-3, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24343019

ABSTRACT

We experimentally demonstrate that the orbital angular momentum (OAM) of a second harmonic (SH) beam, generated within twisted nonlinear photonic crystals, depends both on the OAM of the input pump beam and on the quasi-angular momentum of the crystal. In addition, when the pump's radial index is zero, the radial index of the SH beam is equal to that of the nonlinear crystal. Furthermore, by mixing two noncollinear pump beams in this crystal, we generate, in addition to the SH beams, a new "virtual beam" having multiple values of OAM that are determined by the nonlinear process.

5.
Phys Rev Lett ; 108(23): 233902, 2012 Jun 08.
Article in English | MEDLINE | ID: mdl-23003958

ABSTRACT

We report the observation of nonlinear interactions in quadratic nonlinear crystals having a geometrically twisted susceptibility pattern. The quasi-angular-momentum of these crystals is imprinted on the interacting photons during the nonlinear process so that the total angular momentum is conserved. These crystals affect three basic physical quantities of the output photons: energy, translational momentum, and angular momentum. Here we study the case of second-order harmonic vortex beams, generated from a gaussian pump beam. These crystals can be used to produce multidimensional entanglement of photons by angular momentum states or for shaping the vortex's structure and polarization.

6.
Opt Lett ; 37(11): 2136-8, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22660146

ABSTRACT

We develop a technique for two-dimensional arbitrary wavefront shaping in quadratic nonlinear crystals by using binary nonlinear computer generated holograms. The method is based on transverse illumination of a binary modulated nonlinear photonic crystal, where the phase matching is partially satisfied through the nonlinear Raman-Nath process. We demonstrate the method experimentally showing a conversion of a fundamental Gaussian beam pump light into three Hermite-Gaussian and three Laguerre-Gaussian beams in the second harmonic. Two-dimensional binary nonlinear computer generated holograms open wide possibilities in the field of nonlinear beam shaping and mode conversion.

7.
Opt Lett ; 36(15): 3015-7, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21808390

ABSTRACT

We propose a novel technique for arbitrary wavefront shaping in quadratic nonlinear crystals by introducing the concept of computer-generated holograms (CGHs) into the nonlinear optical regime. We demonstrate the method experimentally showing a conversion of a fundamental Gaussian beam pump light into the first three Hermite-Gaussian beams at the second harmonic in a stoichiometric lithium tantalate nonlinear crystal, and we characterize its efficiency dependence on the fundamental power and the crystal temperature. Nonlinear CGHs open new possibilities in the fields of nonlinear beam shaping, mode conversion, and beam steering.

8.
Appl Opt ; 42(36): 7163-9, 2003 Dec 20.
Article in English | MEDLINE | ID: mdl-14717293

ABSTRACT

In multiple-pass nonlinear frequency conversion devices, interacting waves may accumulate different phases, owing to dispersive elements in the system. Phase compensation is therefore necessary for efficient frequency conversion. We experimentally demonstrate phase compensation in a compact semimonolithic frequency-doubling cavity by using a periodically poled KTP crystal. The conversion efficiency of the crystal was found to decrease at high pump powers, owing to power-dependent thermal lensing. This experimental observation was supported by a theoretical calculation of the conversion efficiency in a cavity, considering the mismatch between the mode's thermally loaded and unloaded cavities. A design procedure was also presented to compensate for the thermal lensing effect. The highest conversion efficiency of 56.5%, corresponding to a second-harmonic power of 117.5 mW at 532 nm, was achieved with a cw Nd:YAG pump power of 208 mW.

SELECTION OF CITATIONS
SEARCH DETAIL
...