Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Opt Express ; 30(9): 13915-13930, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35473146

ABSTRACT

We consider a method of sub-wavelength superlocalization and patterning of atomic matter waves via a two dimensional stimulated Raman adiabatic passage (2D STIRAP) process. An atom initially prepared in its ground level interacts with a doughnut-shaped optical vortex pump beam and a traveling wave Stokes laser beam with a constant (top-hat) intensity profile in space. The beams are sent in a counter-intuitive temporal sequence, in which the Stokes pulse precedes the pump pulse. The atoms interacting with both the traveling wave and the vortex beam are transferred to a final state through the 2D STIRAP, while those located at the core of the vortex beam remain in the initial state, creating a super-narrow nanometer scale atomic spot in the spatial distribution of ground state atoms. By numerical simulations we show that the 2D STIRAP approach outperforms the established method of coherent population trapping, yielding much stronger confinement of atomic excitation. Numerical simulations of the Gross-Pitaevskii equation show that using such a method one can create 2D bright and dark solitonic structures in trapped Bose-Einstein condensates (BECs). The method allows one to circumvent the restriction set by the diffraction limit inherent to conventional methods for formation of localized solitons, with a full control over the position and size of nanometer resolution defects.

2.
Philos Trans A Math Phys Eng Sci ; 380(2216): 20210064, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-34923836

ABSTRACT

The central idea of this review is to consider quantum field theory models relevant for particle physics and replace the fermionic matter in these models by a bosonic one. This is mostly motivated by the fact that bosons are more 'accessible' and easier to manipulate for experimentalists, but this 'substitution' also leads to new physics and novel phenomena. It allows us to gain new information about among other things confinement and the dynamics of the deconfinement transition. We will thus consider bosons in dynamical lattices corresponding to the bosonic Schwinger or [Formula: see text] Bose-Hubbard models. Another central idea of this review concerns atomic simulators of paradigmatic models of particle physics theory such as the Creutz-Hubbard ladder, or Gross-Neveu-Wilson and Wilson-Hubbard models. This article is not a general review of the rapidly growing field-it reviews activities related to quantum simulations for lattice field theories performed by the Quantum Optics Theory group at ICFO and their collaborators from 19 institutions all over the world. Finally, we will briefly describe our efforts to design experimentally friendly simulators of these and other models relevant for particle physics. This article is part of the theme issue 'Quantum technologies in particle physics'.

3.
Sci Rep ; 11(1): 20721, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34671063

ABSTRACT

We propose a theoretical scheme for creating a two-dimensional Electromagnetically Induced Grating in a three-level [Formula: see text]-type atomic system interacting with a weak probe field and two simultaneous position-dependent coupling fields-a two dimensional standing wave and an optical vortex beam. Upon derivation of the Maxwell wave equation, describing the dynamic response of the probe light in the atomic medium, we perform numerical calculations of the amplitude, phase modulations and Fraunhofer diffraction pattern of the probe field under different system parameters. We show that due to the azimuthal modulation of the Laguerre-Gaussian field, a two-dimensional asymmetric grating is observed, giving an increase of the zeroth and high orders of diffraction, thus transferring the probe energy to the high orders of direction. The asymmetry is especially seen in the case of combining a resonant probe with an off-resonant standing wave coupling and optical vortex fields. Unlike in previously reported asymmetric diffraction gratings for PT symmetric structures, the parity time symmetric structure is not necessary for the asymmetric diffraction grating presented here. The asymmetry is due to the constructive and destructive interference between the amplitude and phase modulations of the grating system, resulting in complete blocking of the diffracted photons at negative or positive angles, due to the coupling of the vortex beam. A detailed analysis of the probe field energy transfer to different orders of diffraction in the case of off-resonant standing wave coupling field proves the possibility of direct control over the performance of the grating.

4.
Opt Lett ; 46(17): 4204-4207, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34469975

ABSTRACT

We study the formation of spatially dependent electromagnetically induced transparency (EIT) patterns from pairs of Laguerre-Gauss (LG) modes in an ensemble of cold interacting Rydberg atoms. The EIT patterns can be generated when two-photon detuning does not compensate for the Rydberg level energy shift induced by van der Waals interaction. Depending on the topological numbers of each LG mode, we can pattern dark and bright Ferris-wheel-like structures in the absorption profile with tunable barriers between sites, providing confinement of Rydberg atoms in transverse direction while rendering them transparent to light at specific angular positions. We also show how the atomic density may affect the azimuthal modulation of the absorption profile.

5.
Opt Express ; 28(24): 36936-36952, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33379777

ABSTRACT

We propose a robust localization of the highly-excited Rydberg atoms interacting with doughnut-shaped optical vortices. Compared with the earlier standing-wave (SW)-based localization methods, a vortex beam can provide an ultraprecise two-dimensional localization solely in the zero-intensity center, within a confined excitation region down to the nanometer scale. We show that the presence of the Rydberg-Rydberg interaction permits counter-intuitively much stronger confinement towards a high spatial resolution when it is partially compensated by a suitable detuning. In addition, applying an auxiliary SW modulation to the two-photon detuning allows a three-dimensional confinement of Rydberg atoms. In this case, the vortex field provides a transverse confinement, while the SW modulation of the two-photon detuning localizes the Rydberg atoms longitudinally. To develop a new subwavelength localization technique, our results pave a path one step closer to reducing excitation volumes to the level of a few nanometers, representing a feasible implementation for the future experimental applications.

6.
Opt Lett ; 45(19): 5440-5443, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33001914

ABSTRACT

We investigate the possibility to attain strongly confined atomic localization using interacting Rydberg atoms in a coherent population trapping ladder configuration, where a standing-wave is used as a coupling field in the second leg of the ladder. Depending on the degree of compensation for the Rydberg level energy shift induced by the van der Waals interaction, by the coupling field detuning, we distinguish between two antiblockade regimes, i.e., a partial antiblockade (PA) and a full antiblockade. While a periodic pattern of tightly localized regions can be achieved for both regimes, the PA allows much faster convergence of spatial confinement, yielding a high-resolution Rydberg state-selective superlocalization regime for higher-lying Rydberg levels. In comparison, for lower-lying Rydberg levels, the PA leads to an anomalous change of spectra linewidth, confirming the importance of using a stable uppermost state to achieve a superlocalization regime.

7.
Phys Rev Lett ; 124(11): 113601, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-32242677

ABSTRACT

The prominent Dicke superradiant phase arises from coupling an ensemble of atoms to a cavity optical field when an external optical pumping exceeds a threshold strength. Here we report a prediction of the superradiant instability driven by Anderson localization, realized with a hybrid system of the Dicke and Aubry-André (DAA) model for bosons trapped in a one-dimensional (1D) quasiperiodic optical lattice and coupled to a cavity. Our central finding is that for bosons condensed in a localized phase given by the DAA model, the resonant superradiant scattering is induced, for which the critical optical pumping of the superradiant phase transition approaches zero, giving an instability driven by the Anderson localization. The superradiant phase for the DAA model with or without a mobility edge is investigated, showing that the localization driven superradiant instability is in sharp contrast to the superradiance as widely observed for a Bose-Einstein condensate in extended states, and should be insensitive to the temperature of the system. This study unveils a novel effect of localization on the Dicke superradiance, and is well accessible based on the current experiments.

8.
Phys Rev Lett ; 123(3): 033203, 2019 Jul 19.
Article in English | MEDLINE | ID: mdl-31386451

ABSTRACT

We demonstrate how the combination of oscillating magnetic forces and radio-frequency (rf) pulses endows rf photons with tunable momentum. We observe velocity-selective spin-flip transitions and the associated Doppler shift. Recoil-dressed photons are a promising tool for measurements and quantum simulations, including the realization of gauge potentials and spin-orbit coupling schemes which do not involve optical transitions.

10.
Opt Express ; 26(22): 28249-28262, 2018 Oct 29.
Article in English | MEDLINE | ID: mdl-30470000

ABSTRACT

Recently a scheme has been proposed for detection of the structured light by measuring the transmission of a vortex beam through a cloud of cold rubidium atoms with energy levels of the Λ-type configuration [N. Radwell et al., Phys. Rev. Lett.114, 123603 (2015) ]. This enables observation of regions of spatially dependent electromagnetically induced transparency (EIT). Here we suggest another scenario for detection of the structured light by measuring the absorption profile of a weak nonvortex probe beam in a highly resonant five-level combined tripod and Λ (CTL) atom-light coupling setup. We demonstrate that due to the closed-loop structure of CTL scheme, the absorption of the probe beam depends on the azimuthal angle and orbital angular momentum (OAM) of the control vortex beams. This feature is missing in simple Λ or tripod schemes, as there is no loop in such atom-light couplings. One can identify different regions of spatially structured transparency through measuring the absorption of probe field under different configurations of structured control light.

11.
New J Phys ; 202018.
Article in English | MEDLINE | ID: mdl-30996650

ABSTRACT

We describe anoveltechniqueforcreatinganartificialmagneticfieldforultracoldatomsusinga periodicallypulsedpairofcounterpropagatingRamanlasersthatdrivetransitionsbetween a pair of internal atomic spin states: a multi-frequency coupling term. In conjunction with a magnetic field gradient, this dynamically generates a rectangular lattice with a non-staggered magnetic flux. For a wide range of parameters, the resulting Bloch bands have non-trivial topology, reminiscent of Landau levels, as quantified by their Chern numbers.

12.
Sci Rep ; 6: 33320, 2016 09 16.
Article in English | MEDLINE | ID: mdl-27633848

ABSTRACT

It is well-known that when the magnetic field is stronger than a critical value, the spin imbalance can break the Cooper pairs of electrons and hence hinder the superconductivity in a spin-singlet channel. In a bilayer system of ultra-cold Fermi gases, however, we demonstrate that the critical value of the magnetic field at zero temperature can be significantly increased by including a spin-flip tunnelling, which opens a gap in the spin-triplet channel near the Fermi surface and hence reduces the influence of the effective magnetic field on the superfluidity. The phase transition also changes from first order to second order when the tunnelling exceeds a critical value. Considering a realistic experiment, this mechanism can be implemented by applying an intralayer Raman coupling between the spin states with a phase difference between the two layers.

13.
Phys Rev Lett ; 111(12): 125301, 2013 Sep 20.
Article in English | MEDLINE | ID: mdl-24093271

ABSTRACT

We present a new technique for producing two- and three-dimensional Rashba-type spin-orbit couplings for ultracold atoms without involving light. The method relies on a sequence of pulsed inhomogeneous magnetic fields imprinting suitable phase gradients on the atoms. For sufficiently short pulse durations, the time-averaged Hamiltonian well approximates the Rashba Hamiltonian. Higher order corrections to the energy spectrum are calculated exactly for spin-1/2 and perturbatively for higher spins. The pulse sequence does not modify the form of rotationally symmetric atom-atom interactions. Finally, we present a straightforward implementation of this pulse sequence on an atom chip.

14.
Phys Rev Lett ; 108(23): 235301, 2012 Jun 08.
Article in English | MEDLINE | ID: mdl-23003967

ABSTRACT

We describe a method for creating a three-dimensional analogue to Rashba spin-orbit coupling in systems of ultracold atoms. This laser induced coupling uses Raman transitions to link four internal atomic states with a tetrahedral geometry, and gives rise to a Dirac point that is robust against environmental perturbations. We present an exact result showing that such a spin-orbit coupling in a fermionic system always gives rise to a molecular bound state.

15.
Phys Rev Lett ; 100(20): 200405, 2008 May 23.
Article in English | MEDLINE | ID: mdl-18518513

ABSTRACT

Atom reflection is studied in the presence of a non-Abelian vector potential proportional to a spin-1/2 operator. The potential is produced by a relatively simple laser configuration for atoms with a tripod level scheme. We show that the atomic motion is described by two different dispersion branches with positive or negative chirality. As a consequence, atom reflection shows unusual features, since an incident wave may split into two reflected ones at a barrier, an ordinary specular reflection, and an additional nonspecular one. Remarkably, the latter wave can exhibit negative reflection and may become evanescent if the angle of incidence exceeds a critical value. These reflection properties are crucial for future designs in non-Abelian atom optics.

16.
Phys Rev Lett ; 101(26): 265302, 2008 Dec 31.
Article in English | MEDLINE | ID: mdl-19437649

ABSTRACT

We propose a method of constructing cold atom analogs of the spintronic device known as the Datta-Das transistor (DDT), which, despite its seminal conceptual role in spintronics, has never been successfully realized with electrons. We propose two alternative schemes for an atomic DDT, both of which are based on the experimental setup for tripod stimulated Raman adiabatic passage. Both setups involve atomic beams incident on a series of laser fields mimicking the relativistic spin-orbit coupling for electrons that is the operating mechanism of the DDT.

SELECTION OF CITATIONS
SEARCH DETAIL
...