Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Sci Transl Med ; 15(693): eabp9528, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37099633

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive, irreversible, and rapidly fatal interstitial lung disease marked by the replacement of lung alveoli with dense fibrotic matrices. Although the mechanisms initiating IPF remain unclear, rare and common alleles of genes expressed in lung epithelia, combined with aging, contribute to the risk for this condition. Consistently, single-cell RNA sequencing (scRNA-seq) studies have identified lung basal cell heterogeneity in IPF that might be pathogenic. We used single-cell cloning technologies to generate "libraries" of basal stem cells from the distal lungs of 16 patients with IPF and 10 controls. We identified a major stem cell variant that was distinguished from normal stem cells by its ability to transform normal lung fibroblasts into pathogenic myofibroblasts in vitro and to activate and recruit myofibroblasts in clonal xenografts. This profibrotic stem cell variant, which was shown to preexist in low quantities in normal and even fetal lungs, expressed a broad network of genes implicated in organ fibrosis and showed overlap in gene expression with abnormal epithelial signatures identified in previously published scRNA-seq studies of IPF. Drug screens highlighted specific vulnerabilities of this profibrotic variant to inhibitors of epidermal growth factor and mammalian target of rapamycin signaling as prospective therapeutic targets. This profibrotic stem cell variant in IPF was distinct from recently identified profibrotic stem cell variants in chronic obstructive pulmonary disease and may extend the notion that inappropriate accrual of minor and preexisting stem cell variants contributes to chronic lung conditions.


Subject(s)
Idiopathic Pulmonary Fibrosis , Humans , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/pathology , Lung/pathology , Myofibroblasts/pathology , Fibroblasts/pathology , Stem Cells/metabolism , Cloning, Molecular
3.
Respir Res ; 23(1): 349, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36522710

ABSTRACT

BACKGROUND: Despite causing increased morbidity and mortality, pulmonary hypertension (PH) in chronic obstructive pulmonary disease (COPD) patients (COPD-PH) lacks treatment, due to incomplete understanding of its pathogenesis. Hypertrophy of pulmonary arterial walls and pruning of the microvasculature with loss of capillary beds are known features of pulmonary vascular remodeling in COPD. The remodeling features of pulmonary medium- and smaller vessels in COPD-PH lungs are less well described and may be linked to maladaptation of endothelial cells to chronic cigarette smoking (CS). MicroRNA-126 (miR126), a master regulator of endothelial cell fate, has divergent functions that are vessel-size specific, supporting the survival of large vessel endothelial cells and inhibiting the proliferation of microvascular endothelial cells. Since CS decreases miR126 in microvascular lung endothelial cells, we set out to characterize the remodeling by pulmonary vascular size in COPD-PH and its relationship with miR126 in COPD and COPD-PH lungs. METHODS: Deidentified lung tissue was obtained from individuals with COPD with and without PH and from non-diseased non-smokers and smokers. Pulmonary artery remodeling was assessed by ⍺-smooth muscle actin (SMA) abundance via immunohistochemistry and analyzed by pulmonary artery size. miR126 and miR126-target abundance were quantified by qPCR. The expression levels of ceramide, ADAM9, and endothelial cell marker CD31 were assessed by immunofluorescence. RESULTS: Pulmonary arteries from COPD and COPD-PH lungs had significantly increased SMA abundance compared to non-COPD lungs, especially in small pulmonary arteries and the lung microvasculature. This was accompanied by significantly fewer endothelial cell markers and increased pro-apoptotic ceramide abundance. miR126 expression was significantly decreased in lungs of COPD individuals. Of the targets tested (SPRED1, VEGF, LAT1, ADAM9), lung miR126 most significantly inversely correlated with ADAM9 expression. Compared to controls, ADAM9 was significantly increased in COPD and COPD-PH lungs, predominantly in small pulmonary arteries and lung microvasculature. CONCLUSION: Both COPD and COPD-PH lungs exhibited significant remodeling of the pulmonary vascular bed of small and microvascular size, suggesting these changes may occur before or independent of the clinical development of PH. Decreased miR126 expression with reciprocal increase in ADAM9 may regulate endothelial cell survival and vascular remodeling in small pulmonary arteries and lung microvasculature in COPD and COPD-PH.


Subject(s)
Hypertension, Pulmonary , MicroRNAs , Pulmonary Disease, Chronic Obstructive , Humans , Hypertension, Pulmonary/pathology , Vascular Remodeling , Endothelial Cells/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Artery/metabolism , Lung/metabolism , Ceramides/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Membrane Proteins/metabolism , ADAM Proteins/metabolism
4.
EBioMedicine ; 86: 104351, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36375315

ABSTRACT

BACKGROUND: Coronavirus Disease 2019 (COVID-19) can lead to the development of acute respiratory distress syndrome (ARDS). In some patients with non-resolvable (NR) COVID-19, lung injury can progress rapidly to the point that lung transplantation is the only viable option for survival. This fatal progression of lung injury involves a rapid fibroproliferative response and takes on average 15 weeks from initial symptom presentation. Little is known about the mechanisms that lead to this fulminant lung fibrosis (FLF) in NR-COVID-19. METHODS: Using a pre-designed unbiased PCR array for fibrotic markers, we analyzed the fibrotic signature in a subset of NR-COVID-19 lungs. We compared the expression profile against control lungs (donor lungs discarded for transplantation), and explanted tissue from patients with idiopathic pulmonary fibrosis (IPF). Subsequently, RT-qPCR, Western blots and immunohistochemistry were conducted to validate and localize selected pro-fibrotic targets. A total of 23 NR-COVID-19 lungs were used for RT-qPCR validation. FINDINGS: We revealed a unique fibrotic gene signature in NR-COVID-19 that is dominated by a hyper-expression of pro-fibrotic genes, including collagens and periostin. Our results also show a significantly increased expression of Collagen Triple Helix Repeat Containing 1(CTHRC1) which co-localized in areas rich in alpha smooth muscle expression, denoting myofibroblasts. We also show a significant increase in cytokeratin (KRT) 5 and 8 expressing cells adjacent to fibroblastic areas and in areas of apparent epithelial bronchiolization. INTERPRETATION: Our studies may provide insights into potential cellular mechanisms that lead to a fulminant presentation of lung fibrosis in NR-COVID-19. FUNDING: National Institute of Health (NIH) Grants R01HL154720, R01DK122796, R01DK109574, R01HL133900, and Department of Defense (DoD) Grant W81XWH2110032 to H.K.E. NIH Grants: R01HL138510 and R01HL157100, DoD Grant W81XWH-19-1-0007, and American Heart Association Grant: 18IPA34170220 to H.K.-Q. American Heart Association: 19CDA34660279, American Lung Association: CA-622265, Parker B. Francis Fellowship, 1UL1TR003167-01 and The Center for Clinical and Translational Sciences, McGovern Medical School to X.Y.


Subject(s)
COVID-19 , Idiopathic Pulmonary Fibrosis , Lung Injury , Humans , Collagen/metabolism , COVID-19/complications , COVID-19/pathology , Extracellular Matrix Proteins/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Fibrosis , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/metabolism , Lung/pathology , Lung Injury/metabolism
5.
Matrix Biol ; 111: 53-75, 2022 08.
Article in English | MEDLINE | ID: mdl-35671866

ABSTRACT

Pulmonary hypertension (PH) comprises a diverse group of disorders that share a common pathway of pulmonary vascular remodeling leading to right ventricular failure. Development of anti-remodeling strategies is an emerging frontier in PH therapeutics that requires a greater understanding of the interactions between vascular wall cells and their extracellular matrices. The ubiquitous matrix glycan, hyaluronan (HA), is markedly elevated in lungs from patients and experimental models with PH. Herein, we identified HA synthase-2 (HAS2) in the pulmonary artery smooth muscle cell (PASMC) layer as a predominant locus of HA dysregulation. HA upregulation involves depletion of NUDT21, a master regulator of alternative polyadenylation, resulting in 3'UTR shortening and hyper-expression of HAS2. The ensuing increase of HAS2 and hyper-synthesis of HA promoted bioenergetic dysfunction of PASMC characterized by impaired mitochondrial oxidative capacity and a glycolytic shift. The resulting HA accumulation stimulated pro-remodeling phenotypes such as cell proliferation, migration, apoptosis-resistance, and stimulated pulmonary artery contractility. Transgenic mice, mimicking HAS2 hyper-synthesis in smooth muscle cells, developed spontaneous PH, whereas targeted deletion of HAS2 prevented experimental PH. Pharmacological blockade of HAS2 restored normal bioenergetics in PASMC, ameliorated cell remodeling phenotypes, and reversed experimental PH in vivo. In summary, our results uncover a novel mechanism of HA hyper-synthesis and downstream effects on pulmonary vascular cell metabolism and remodeling.


Subject(s)
Energy Metabolism , Hyaluronan Synthases , Hyaluronic Acid , Hypertension, Pulmonary , 3' Untranslated Regions/genetics , Animals , Cell Proliferation , Energy Metabolism/genetics , Humans , Hyaluronan Synthases/genetics , Hyaluronan Synthases/metabolism , Hyaluronic Acid/biosynthesis , Hypertension, Pulmonary/enzymology , Mice , Mice, Transgenic , Myocytes, Smooth Muscle/enzymology
6.
Am J Respir Cell Mol Biol ; 66(1): 53-63, 2022 01.
Article in English | MEDLINE | ID: mdl-34370624

ABSTRACT

Idiopathic pulmonary fibrosis (IPF), a devastating, fibroproliferative, chronic lung disorder, is associated with expansion of fibroblasts/myofibroblasts, which leads to excessive production and deposition of extracellular matrix. IPF is typically clinically identified as end-stage lung disease, after fibrotic processes are well-established and advanced. Fibroblasts have been shown to be critically important in the development and progression of IPF. We hypothesize that differential chromatin access can drive genetic differences in IPF fibroblasts relative to healthy fibroblasts. To this end, we performed assay of transposase-accessible chromatin sequencing to identify differentially accessible regions within the genomes of fibroblasts from healthy and IPF lungs. Multiple motifs were identified to be enriched in IPF fibroblasts compared with healthy fibroblasts, including binding motifs for TWIST1 and FOXA1. RNA sequencing identified 93 genes that could be annotated to differentially accessible regions. Pathway analysis of the annotated genes identified cellular adhesion, cytoskeletal anchoring, and cell differentiation as important biological processes. In addition, single nucleotide polymorphism analysis showed that linkage disequilibrium blocks of IPF risk single nucleotide polymorphisms with IPF-accessible regions that have been identified to be located in genes that are important in IPF, including MUC5B, TERT, and TOLLIP. Validation studies in isolated lung tissue confirmed increased expression for TWIST1 and FOXA1 in addition to revealing SHANK2 and CSPR2 as novel targets. Thus, modulation of differential chromatin access may be an important mechanism in the pathogenesis of lung fibrosis.


Subject(s)
Epigenesis, Genetic , Fibroblasts/metabolism , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/pathology , Transcriptome/genetics , Base Sequence , Chromatin/metabolism , Gene Expression Profiling , Gene Regulatory Networks , Humans , Molecular Sequence Annotation , Polymorphism, Single Nucleotide/genetics , Transcription Factors/metabolism , Transposases/metabolism
7.
Lung India ; 38(6): 571-573, 2021.
Article in English | MEDLINE | ID: mdl-34747741

ABSTRACT

Severe pulmonary hypertension (PH) in obese patients pose a challenge to treat despite advances in medical therapeutics. Current treatment options are limited for patients who are not responding to maximal medical therapy. Here, we present a case of multifactorial PH, not responsive to ambrisentan, tadalafil, and treprostinil, even after optimization of cardiac and pulmonary function and had a poor prognosis. She demonstrated weight loss after bariatric surgery, improving her restrictive lung disease, obstructive sleep apnea and PH, and overall functionality. Bariatric surgery may offer a potential therapeutic option, in patients with morbid obesity and PH resistant to maximal medical therapy.

8.
Ann Diagn Pathol ; 55: 151832, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34628284

ABSTRACT

INTRODUCTION: Granulomatous infections are common in patients with chronic lung disease. We aim to study the incidence and clinicopathological features of granulomatous infections in a cohort of patients undergoing lung transplantation for end-stage chronic lung disease. METHODS: Pathology reports of 50 explanted native lungs of patients who underwent lung transplantation since 2015 at our institution were reviewed. Four cases with granulomatous lesions were identified. Correlation was made with clinical findings in the 4 cases. RESULTS: The granulomatous infections include non-necrotizing cryptococcal pneumonitis (case 1), necrotizing pneumonia due to Scedosporium sp. and Mycobacterium avium Complex (MAC) (Cases 2 and 3), and invasive Aspergillus pneumonia (Case 4). One patient received pre-transplant fungal prophylaxis (Case 4). Post-transplant infectious complications included invasive (Cases 2 and 4) and non-invasive (Case 1) fungal infections and bacterial pneumonia (Cases 1 and 2). Two patients (Cases 3 and 4) developed acute cellular rejection (ACR) in the first 30 days. The third patient (Case 1) was identified with ACR in the 9 months post-transplant and chronic lung allograft dysfunction at 29 months. In terms of mortality, 1 patient (Case 1) died at 30 months post-transplant from pseudomonal sepsis and chronic graft failure. Two patients with invasive fungal infections (Cases 2 and 4) are on secondary prophylaxis and doing well. One patient (Case 3) remains infection-free and on MAC prophylaxis. CONCLUSIONS: In our case series, patients with chronic lung diseases with superimposed granulomatous infestations frequently experienced post-transplant complications. These include invasive infections and repeat ACRs that predispose patients to chronic graft dysfunction. Pre- and post-transplant antifungal prophylaxis reduces fungal load and complication risk post-transplant.


Subject(s)
Invasive Fungal Infections , Lung Transplantation/adverse effects , Mycobacterium Infections, Nontuberculous , Aged , Aspergillus fumigatus/isolation & purification , Female , Granuloma , Humans , Invasive Fungal Infections/diagnosis , Invasive Fungal Infections/etiology , Invasive Fungal Infections/pathology , Lung Diseases/complications , Lung Diseases/pathology , Male , Middle Aged , Mycobacterium Infections, Nontuberculous/diagnosis , Mycobacterium Infections, Nontuberculous/etiology , Mycobacterium Infections, Nontuberculous/pathology , Nontuberculous Mycobacteria/isolation & purification , Postoperative Complications , Retrospective Studies , Scedosporium/isolation & purification , Treatment Outcome
9.
Cell ; 181(4): 848-864.e18, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32298651

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a progressive condition of chronic bronchitis, small airway obstruction, and emphysema that represents a leading cause of death worldwide. While inflammation, fibrosis, mucus hypersecretion, and metaplastic epithelial lesions are hallmarks of this disease, their origins and dependent relationships remain unclear. Here we apply single-cell cloning technologies to lung tissue of patients with and without COPD. Unlike control lungs, which were dominated by normal distal airway progenitor cells, COPD lungs were inundated by three variant progenitors epigenetically committed to distinct metaplastic lesions. When transplanted to immunodeficient mice, these variant clones induced pathology akin to the mucous and squamous metaplasia, neutrophilic inflammation, and fibrosis seen in COPD. Remarkably, similar variants pre-exist as minor constituents of control and fetal lung and conceivably act in normal processes of immune surveillance. However, these same variants likely catalyze the pathologic and progressive features of COPD when expanded to high numbers.


Subject(s)
Lung/pathology , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/metabolism , Adult , Aged , Animals , Female , Fibrosis/physiopathology , Humans , Inflammation/pathology , Lung/metabolism , Male , Metaplasia/physiopathology , Mice , Middle Aged , Neutrophils/immunology , Pneumonia/pathology , Pulmonary Disease, Chronic Obstructive/physiopathology , Single-Cell Analysis/methods , Stem Cells/metabolism
10.
J Biol Chem ; 294(43): 15781-15794, 2019 10 25.
Article in English | MEDLINE | ID: mdl-31488543

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic disease characterized by the pathological remodeling of air sacs as a result of excessive accumulation of extracellular matrix (ECM) proteins, but the mechanism governing the robust protein expression is poorly understood. Our recent findings demonstrate that alternative polyadenylation (APA) caused by NUDT21 reduction is important for the increased expression of fibrotic mediators and ECM proteins in lung fibroblasts by shortening the 3'-untranslated regions (3'-UTRs) of mRNAs and stabilizing their transcripts, therefore activating pathological signaling pathways. Despite the importance of NUDT21 reduction in the regulation of fibrosis, the underlying mechanisms for the depletion are unknown. We demonstrate here that NUDT21 is depleted by TGFß1. We found that miR203, which is increased in IPF, was induced by TGFß1 to target the NUDT21 3'-UTR, thus depleting NUDT21 in human and mouse lung fibroblasts. TGFß1-mediated NUDT21 reduction was attenuated by the miR203 inhibitor antagomiR203 in fibroblasts. TGFß1 transgenic mice revealed that TGFß1 down-regulates NUDT21 in fibroblasts in vivo Furthermore, TGFß1 promoted differential APA of fibrotic genes, including FGF14, RICTOR, TMOD2, and UCP5, in association with increased protein expression. This unique differential APA signature was also observed in IPF fibroblasts. Altogether, our results identified TGFß1 as an APA regulator through NUDT21 depletion amplifying pulmonary fibrosis.


Subject(s)
3' Untranslated Regions/genetics , Lung/pathology , Transforming Growth Factor beta1/metabolism , Animals , Cells, Cultured , Cleavage And Polyadenylation Specificity Factor/genetics , Cleavage And Polyadenylation Specificity Factor/metabolism , Down-Regulation/genetics , Fibroblasts/metabolism , Fibroblasts/pathology , Fibrosis , Humans , Mice, Inbred C57BL , Mice, Transgenic , MicroRNAs/genetics , MicroRNAs/metabolism , Models, Biological , Polyadenylation/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
11.
Front Physiol ; 9: 555, 2018.
Article in English | MEDLINE | ID: mdl-29910735

ABSTRACT

Background: Pulmonary hypertension (PH) is a devastating and progressive disease characterized by excessive proliferation of pulmonary artery smooth muscle cells (PASMCs) and remodeling of the lung vasculature. Adenosine signaling through the ADORA2B receptor has previously been implicated in disease progression and tissue remodeling in chronic lung disease. In experimental models of PH associated with chronic lung injury, pharmacological or genetic inhibition of ADORA2B improved markers of chronic lung injury and hallmarks of PH. However, the contribution of ADORA2B expression in the PASMC was not fully evaluated. Hypothesis: We hypothesized that adenosine signaling through the ADORA2B receptor in PASMC mediates the development of PH. Methods: PASMCs from controls and patients with idiopathic pulmonary arterial hypertension (iPAH) were characterized for expression levels of all adenosine receptors. Next, we evaluated the development of PH in ADORA2Bf/f-Transgelin (Tagln)cre mice. These mice or adequate controls were exposed to a combination of SUGEN (SU5416, 20 mg/kg/b.w. IP) and hypoxia (10% O2) for 28 days (HX-SU) or to chronic low doses of bleomycin (BLM, 0.035U/kg/b.w. IP). Cardiovascular readouts including right ventricle systolic pressures (RVSPs), Fulton indices and vascular remodeling were determined. Using PASMCs we identified ADORA2B-dependent mediators involved in vascular remodeling. These mediators: IL-6, hyaluronan synthase 2 (HAS2) and tissue transglutaminase (Tgm2) were determined by RT-PCR and validated in our HX-SU and BLM models. Results: Increased levels of ADORA2B were observed in PASMC from iPAH patients. ADORA2Bf/f-Taglncre mice were protected from the development of PH following HX-SU or BLM exposure. In the BLM model of PH, ADORA2Bf/f- Taglncre mice were not protected from the development of fibrosis. Increased expression of IL-6, HAS2 and Tgm2 was observed in PASMC in an ADORA2B-dependent manner. These mediators were also reduced in ADORA2Bf/f- Taglncre mice exposed to HX-SU or BLM. Conclusions: Our studies revealed ADORA2B-dependent increased levels of IL-6, hyaluronan and Tgm2 in PASMC, consistent with reduced levels in ADORA2Bf/f- Taglncre mice exposed to HX-SU or BLM. Taken together, our data indicates that ADORA2B on PASMC mediates the development of PH through the induction of IL-6, hyaluronan and Tgm2. These studies point at ADORA2B as a therapeutic target to treat PH.

12.
Clin Transplant ; 31(8)2017 08.
Article in English | MEDLINE | ID: mdl-28658512

ABSTRACT

BACKGROUND: The natural history of de novo donor-specific antibodies (dnDSA) after lung transplantation is not well-described. We sought to determine the incidence and risk factors associated with dnDSA and compare outcomes between recipients with transient (or isolated) vs persistent dnDSA after transplantation. METHODS: A single-center review of all lung transplants from 1/2009-7/2013. DSAs were tested eight times in the first year and every 4 months thereafter. Outcomes examined included acute rejection and graft failure. RESULTS: Median follow-up was 18 months (range: 1-61 months), and 24.6% of 333 first-time lung-only transplant recipients developed a dnDSA. Ethnicity, HLA-DQ mismatches, post-transplantation platelet transfusion and Lung Allocation Score >60 were associated with dnDSA (P<.05). Overall graft survival was worse for dnDSA-positive vs negative recipients (P=.025). Of 323 recipients with 1-year follow-up, 72 (22.2%) developed dnDSA, and in 25 (34.7%), the dnDSA was transient and cleared. Recipients with transient dnDSA were less likely to develop acute rejection than those with persistent dnDSA (P=.007). CONCLUSIONS: Early post-lung transplantation, dnDSA occurred in 1/4 of recipients, was associated with peri-transplant risk factors and resulted in decreased survival. Spontaneous clearance of dnDSA, seen in one-third of recipients, was associated with a lower risk of acute rejection.


Subject(s)
Graft Rejection/immunology , Graft Survival/immunology , Isoantibodies/immunology , Lung Transplantation , Adult , Aged , Case-Control Studies , Female , Follow-Up Studies , Graft Rejection/epidemiology , Graft Rejection/therapy , HLA Antigens/immunology , Humans , Kaplan-Meier Estimate , Logistic Models , Male , Middle Aged , Outcome Assessment, Health Care , Retrospective Studies , Risk Factors , Tissue Donors
13.
Am J Respir Crit Care Med ; 189(1): 16-29, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24251647

ABSTRACT

RATIONALE: IL-4Rα, the common receptor component for IL-4 and IL-13, plays a critical role in IL-4- and IL-13-mediated signaling pathways that regulate airway inflammation and remodeling. However, the regulatory mechanisms underlying IL-4Rα turnover and its signal termination remain elusive. OBJECTIVES: To evaluate the role of STUB1 (STIP1 homology and U-Box containing protein 1) in regulating IL-4R signaling in airway inflammation. METHODS: The roles of STUB1 in IL-4Rα degradation and its signaling were investigated by immunoblot, immunoprecipitation, and flow cytometry. The involvement of STUB1 in airway inflammation was determined in vivo by measuring lung inflammatory cells infiltration, mucus production, serum lgE levels, and alveolar macrophage M2 activation in STUB1(-/-) mice. STUB1 expression was evaluated in airway epithelium of patients with asthma and lung tissues of subjects with chronic obstructive pulmonary disease. MEASUREMENTS AND MAIN RESULTS: STUB1 interacted with IL-4Rα and targeted it for ubiquitination-mediated proteasomal degradation, terminating IL-4 or IL-13 signaling. STUB1 knockout cells showed increased levels of IL-4Rα and sustained STAT6 activation, whereas STUB1 overexpression reduced IL-4Rα levels. Mice deficient in STUB1 had spontaneous airway inflammation, alternative M2 activation of alveolar macrophage, and increased serum IgE. STUB1 levels were increased in airways of subjects with asthma or chronic obstructive pulmonary disease, suggesting that up-regulation of STUB1 might be an important feedback mechanism to dampen IL-4R signaling in airway inflammation. CONCLUSIONS: Our study identified a previously uncharacterized role for STUB1 in regulating IL-4R signaling, which might provide a new strategy for attenuating airway inflammation.


Subject(s)
Pneumonia/physiopathology , Receptors, Interleukin-4/physiology , Signal Transduction/physiology , Ubiquitin-Protein Ligases/physiology , Adult , Animals , Asthma/physiopathology , Child , Down-Regulation/physiology , Female , Flow Cytometry , Humans , Immunoblotting , Immunoprecipitation , Macrophage Activation/physiology , Male , Mice , Mice, Knockout , Proteasome Endopeptidase Complex/physiology , Pulmonary Disease, Chronic Obstructive/physiopathology , Real-Time Polymerase Chain Reaction , Receptors, Cell Surface/physiology , STAT6 Transcription Factor/physiology , Ubiquitin/physiology
14.
Curr Opin Pulm Med ; 19(1): 30-5, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23143196

ABSTRACT

PURPOSE OF REVIEW: Asthma is a common worldwide respiratory illness with significant morbidity and mortality. The disease is characterized by airway inflammation with involvement of multiple biological pathways. Genetic predisposition and increased susceptibility to severe respiratory viral infections are well known clinical features of asthma. Autophagy is an evolutionarily conserved cellular degradation process with significant impact on immunity and antiviral response. In this review we have described the role of autophagy in immune cell survival, proliferation and function. Autophagy has complex effects on immune response involved in inflammation, specifically Th2 immune response. Common respiratory viruses are associated with increased morbidity and mortality in asthmatic patients. RECENT FINDINGS: We describe recent studies showing the effect of autophagy on replication and immune response to common respiratory viruses. The role of autophagy in asthma has recently been investigated. Two studies have been published describing the association of autophagy with asthma. Genetic polymorphism in specific autophagy genes is associated with asthma and influences gene expression in an experimental in-vivo model. SUMMARY: These studies provide us with a window into the possible role of autophagy in asthma and offer new clues to pathogenesis. Modulation of autophagy has the potential to develop into a new therapeutic avenue to treat this common respiratory ailment.


Subject(s)
Asthma/physiopathology , Autophagy/physiology , Immunity/physiology , Asthma/genetics , Asthma/immunology , Autophagy/immunology , Autophagy-Related Protein 5 , Disease Susceptibility/immunology , Disease Susceptibility/physiopathology , Humans , Microtubule-Associated Proteins/genetics , Polymorphism, Genetic/genetics , Respiratory Tract Infections/immunology , Respiratory Tract Infections/physiopathology , Respiratory Tract Infections/virology
15.
PLoS One ; 7(4): e33454, 2012.
Article in English | MEDLINE | ID: mdl-22536318

ABSTRACT

RATIONALE AND OBJECTIVE: Autophagy is a cellular process directed at eliminating or recycling cellular proteins. Recently, the autophagy pathway has been implicated in immune dysfunction, the pathogenesis of inflammatory disorders, and response to viral infection. Associations between two genes in the autophagy pathway, ATG5 and ATG7, with childhood asthma were investigated. METHODS: Using genetic and experimental approaches, we examined the association of 13 HapMap-derived tagging SNPs in ATG5 and ATG7 with childhood asthma in 312 asthmatic and 246 non-allergic control children. We confirmed our findings by using independent cohorts and imputation analysis. Finally, we evaluated the functional relevance of a disease associated SNP. MEASUREMENTS AND MAIN RESULTS: We demonstrated that ATG5 single nucleotide polymorphisms rs12201458 and rs510432 were associated with asthma (p = 0.00085 and 0.0025, respectively). In three independent cohorts, additional variants in ATG5 in the same LD block were associated with asthma (p<0.05). We found that rs510432 was functionally relevant and conferred significantly increased promotor activity. Furthermore, Atg5 expression was increased in nasal epithelium of acute asthmatics compared to stable asthmatics and non-asthmatic controls. CONCLUSION: Genetic variants in ATG5, including a functional promotor variant, are associated with childhood asthma. These results provide novel evidence for a role for ATG5 in childhood asthma.


Subject(s)
Asthma/genetics , Microtubule-Associated Proteins/genetics , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Adolescent , Asthma/metabolism , Asthma/pathology , Autophagy-Related Protein 5 , Autophagy-Related Protein 7 , Case-Control Studies , Child , Child, Preschool , Female , Gene Frequency , Genes, Reporter , Genetic Association Studies , HEK293 Cells , Haplotypes , Humans , Linkage Disequilibrium , Luciferases, Firefly/biosynthesis , Luciferases, Firefly/genetics , Luciferases, Renilla/biosynthesis , Luciferases, Renilla/genetics , Male , Microtubule-Associated Proteins/metabolism , Nasal Mucosa/metabolism , Sequence Analysis, DNA , Transcription, Genetic , Ubiquitin-Activating Enzymes/genetics , Ubiquitin-Activating Enzymes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...