Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 62(5): 1935-1941, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-35912483

ABSTRACT

We herein report our investigations on the use of a tris-silanol-decorated polyoxotungstate, [SbW9O33(tBuSiOH)3]3-, as a molecular support model to describe the coordination of an isolated vanadium atom at metal oxides, focusing on the reactivity of the reduced derivatives in the presence of protons. Accumulation of electrons and protons at an active site is a main feature associated with heterogeneous catalysts able to conduct the (oxy)dehydrogenation of alkanes or alcohols. Our results indicate that two-electron reduced derivatives release H2 upon protonation, a reaction that probably takes place at the polyoxotungstic framework rather than at the vanadium center.

2.
Inorg Chem ; 61(20): 7700-7709, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35549467

ABSTRACT

The mixed molybdenum/tungsten Keggin-type polyoxometalate (POM) hybrid (TBA)4[PW9Mo2O39{Sn(C6H4I)}] (TBA = tert-butylammonium) has been prepared by the reaction between [α-PW9Mo2O39]7- and [Cl3Sn(C6H4I)] in dried acetonitrile, in the presence of tetra-n-butylammonium bromide. A further coupling reaction affords the ferrocenyl derivative (TBA)4[PW9Mo2O39{Sn(C6H4)C≡C(C6H4)Fc}]. The POM hybrids have been thoroughly characterized by NMR and IR spectroscopies. Electrochemical analysis confirms their ease of reduction compared to the all-W analogue, albeit with a second reduction process occurring at a lower potential than in the all-Mo species. It is noteworthy that the second reduction is accompanied by an unusual red shift of the electronic absorption spectrum. Whereas there is no doubt that the first reduction deals with Mo, the location of the second electron in the bireduced species, on the second Mo or on W, has thus been the subject of a cross-investigation by spectroelectrochemistry, electron spin resonance, and theoretical calculations. Finally, it came out that the second reduction is also Mo-centered with two unpaired and antiferromagnetically coupled extra electrons.

3.
Front Chem ; 9: 765108, 2021.
Article in English | MEDLINE | ID: mdl-34778214

ABSTRACT

Addition of a soluble or a supported CrIII-salophen complex as a co-catalyst greatly enhances the catalytic activity of Bu4NBr for the formation of styrene carbonate from styrene epoxide and CO2. Their combination with a very low co-catalyst:Bu4NBr:styrene oxide molar ratio = 1:2:112 (corresponding to 0.9 mol% of CrIII co-catalyst) led to an almost complete conversion of styrene oxide after 7 h at 80°C under an initial pressure of CO2 of 11 bar and to a selectivity in styrene carbonate of 100%. The covalent heterogenization of the complex was achieved through the formation of an amide bond with a functionalized {NH2}-SBA-15 silica support. In both conditions, the use of these CrIII catalysts allowed excellent conversion of styrene already at 50°C (69 and 47% after 24 h, respectively, in homogeneous and heterogeneous conditions). Comparison with our previous work using other metal cations from the transition metals particularly highlights the preponderant effect of the nature of the metal cation as a co-catalyst in this reaction, that may be linked to its calculated binding energy to the epoxides. Both co-catalysts were successfully reused four times without any appreciable loss of performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...